Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 15;323(Pt 2):379–385. doi: 10.1042/bj3230379

ATP synthase subunit c expression: physiological regulation of the P1 and P2 genes.

U Andersson 1, J Houstek 1, B Cannon 1
PMCID: PMC1218330  PMID: 9163327

Abstract

Pre-translational regulation of subunit c has been suggested to control the biosynthesis of mitochondrial ATP synthase (ATPase) in brown adipose tissue (BAT). Subunit c is encoded by the genes P1 and P2, which encode identical mature proteins. We have determined here the levels of P1 and P2 mRNAs in different tissues, in response to cold acclimation in rats, during ontogenic development of BAT in hamsters, and following thyroid hormone treatment in rat BAT and liver. Quantitative ribonuclease protection analysis showed that both the P1 and P2 mRNAs were present in all rat tissues measured. Their total amount in each tissue corresponded well with the ATPase content of that tissue. While the P1/P2 mRNA ratio is high in ATPase-rich tissues, the P2 mRNA dominates in tissues with less ATPase. Cold acclimation affects P1 but not P2 gene expression in rat BAT. A rapid and transient increase in P1 mRNA is followed by sustained depression, which is accompanied by a decrease in ATPase content. Similarly, ontogenic suppression of ATPase content in hamster BAT was accompanied by suppression of the P1 mRNA levels, while P2 expression was virtually unchanged. Furthermore, when hypothyroid rats were treated with thyroid hormone, the steady-state level of P1 but not of P2 mRNA was significantly increased in liver. BAT was unaffected. We conclude that the P1 and P2 genes for subunit c are differentially regulated in vivo. While the P2 gene is expressed constitutively, the P1 gene responds to different physiological stimuli as a means of modulating the relative content of ATP synthase.

Full Text

The Full Text of this article is available as a PDF (319.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnd T., Skála J., Lindberg O. Changes in interscapular brown adipose tissue of the rat during perinatal and early postnatal development and after cold acclimation. I. Activities of some respiratory enzymes in the tissue. Comp Biochem Physiol. 1970 Apr 1;33(3):499–508. doi: 10.1016/0010-406x(70)90367-1. [DOI] [PubMed] [Google Scholar]
  2. Bianco A. C., Silva J. E. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors. Am J Physiol. 1988 Oct;255(4 Pt 1):E496–E503. doi: 10.1152/ajpendo.1988.255.4.E496. [DOI] [PubMed] [Google Scholar]
  3. Bianco A. C., Silva J. E. Optimal response of key enzymes and uncoupling protein to cold in BAT depends on local T3 generation. Am J Physiol. 1987 Sep;253(3 Pt 1):E255–E263. doi: 10.1152/ajpendo.1987.253.3.E255. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bukowiecki L., Collet A. J., Follea N., Guay G., Jahjah L. Brown adipose tissue hyperplasia: a fundamental mechanism of adaptation to cold and hyperphagia. Am J Physiol. 1982 Jun;242(6):E353–E359. doi: 10.1152/ajpendo.1982.242.6.E353. [DOI] [PubMed] [Google Scholar]
  6. Cannon B., Vogel G. The mitochondrial ATPase of brown adipose tissue. Purification and comparison with the mitochondrial ATPase from beef heart. FEBS Lett. 1977 Apr 15;76(2):284–289. doi: 10.1016/0014-5793(77)80169-5. [DOI] [PubMed] [Google Scholar]
  7. Chloupková M., Luciaková K. In vitro association of mitochondrial ATP- dependent protease with mitochondrial heat-shock proteins. Neoplasma. 1995;42(6):325–329. [PubMed] [Google Scholar]
  8. Chrzanowska-Lightowlers Z. M., Preiss T., Lightowlers R. N. Inhibition of mitochondrial protein synthesis promotes increased stability of nuclear-encoded respiratory gene transcripts. J Biol Chem. 1994 Nov 4;269(44):27322–27328. [PubMed] [Google Scholar]
  9. Collinson I. R., Runswick M. J., Buchanan S. K., Fearnley I. M., Skehel J. M., van Raaij M. J., Griffiths D. E., Walker J. E. Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition, and reconstitution with F1-ATPase. Biochemistry. 1994 Jun 28;33(25):7971–7978. doi: 10.1021/bi00191a026. [DOI] [PubMed] [Google Scholar]
  10. Collinson I. R., van Raaij M. J., Runswick M. J., Fearnley I. M., Skehel J. M., Orriss G. L., Miroux B., Walker J. E. ATP synthase from bovine heart mitochondria. In vitro assembly of a stalk complex in the presence of F1-ATPase and in its absence. J Mol Biol. 1994 Sep 30;242(4):408–421. doi: 10.1006/jmbi.1994.1591. [DOI] [PubMed] [Google Scholar]
  11. Dicker A., Raasmaja A., Cannon B., Nedergaard J. Increased alpha 1-adrenoceptor density in brown adipose tissue indicates recruitment drive in hypothyroid rats. Am J Physiol. 1992 Oct;263(4 Pt 1):E654–E662. doi: 10.1152/ajpendo.1992.263.4.E654. [DOI] [PubMed] [Google Scholar]
  12. Evans M. J., Scarpulla R. C. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev. 1990 Jun;4(6):1023–1034. doi: 10.1101/gad.4.6.1023. [DOI] [PubMed] [Google Scholar]
  13. Farrell L. B., Nagley P. Human liver cDNA clones encoding proteolipid subunit 9 of the mitochondrial ATPase complex. Biochem Biophys Res Commun. 1987 May 14;144(3):1257–1264. doi: 10.1016/0006-291x(87)91446-x. [DOI] [PubMed] [Google Scholar]
  14. Fillingame R. H. Subunit c of F1F0 ATP synthase: structure and role in transmembrane energy transduction. Biochim Biophys Acta. 1992 Jul 17;1101(2):240–243. [PubMed] [Google Scholar]
  15. Foster D. O., Frydman M. L. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can J Physiol Pharmacol. 1979 Mar;57(3):257–270. doi: 10.1139/y79-039. [DOI] [PubMed] [Google Scholar]
  16. Gay N. J., Walker J. E. Two genes encoding the bovine mitochondrial ATP synthase proteolipid specify precursors with different import sequences and are expressed in a tissue-specific manner. EMBO J. 1985 Dec 16;4(13A):3519–3524. doi: 10.1002/j.1460-2075.1985.tb04111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Glass C. K., Holloway J. M. Regulation of gene expression by the thyroid hormone receptor. Biochim Biophys Acta. 1990 Dec 11;1032(2-3):157–176. doi: 10.1016/0304-419x(90)90002-i. [DOI] [PubMed] [Google Scholar]
  18. Haraguchi Y., Chung A. B., Neill S., Wallace D. C. OXBOX and REBOX, overlapping promoter elements of the mitochondrial F0F1-ATP synthase beta subunit gene. OXBOX/REBOX in the ATPsyn beta promoter. J Biol Chem. 1994 Mar 25;269(12):9330–9334. [PubMed] [Google Scholar]
  19. Hentze M. W. Determinants and regulation of cytoplasmic mRNA stability in eukaryotic cells. Biochim Biophys Acta. 1991 Nov 11;1090(3):281–292. doi: 10.1016/0167-4781(91)90191-n. [DOI] [PubMed] [Google Scholar]
  20. Higuti T., Kuroiwa K., Kawamura Y., Morimoto K., Tsujita H. Molecular cloning and sequence of cDNAs for the import precursors of oligomycin sensitivity conferring protein, ATPase inhibitor protein, and subunit c of H(+)-ATP synthase in rat mitochondria. Biochim Biophys Acta. 1993 Mar 20;1172(3):311–314. doi: 10.1016/0167-4781(93)90219-4. [DOI] [PubMed] [Google Scholar]
  21. Hod Y. A simplified ribonuclease protection assay. Biotechniques. 1992 Dec;13(6):852–854. [PubMed] [Google Scholar]
  22. Houstek J., Andersson U., Tvrdík P., Nedergaard J., Cannon B. The expression of subunit c correlates with and thus may limit the biosynthesis of the mitochondrial F0F1-ATPase in brown adipose tissue. J Biol Chem. 1995 Mar 31;270(13):7689–7694. doi: 10.1074/jbc.270.13.7689. [DOI] [PubMed] [Google Scholar]
  23. Houstek J., Janíková D., Bednár J., Kopecký J., Sebestián J., Soukup T. Postnatal appearance of uncoupling protein and formation of thermogenic mitochondria in hamster brown adipose tissue. Biochim Biophys Acta. 1990 Feb 22;1015(3):441–449. doi: 10.1016/0005-2728(90)90077-h. [DOI] [PubMed] [Google Scholar]
  24. Houstek J., Tvrdík P., Pavelka S., Baudysová M. Low content of mitochondrial ATPase in brown adipose tissue is the result of post-transcriptional regulation. FEBS Lett. 1991 Dec 9;294(3):191–194. doi: 10.1016/0014-5793(91)80666-q. [DOI] [PubMed] [Google Scholar]
  25. Izquierdo J. M., Cuezva J. M. Evidence of post-transcriptional regulation in mammalian mitochondrial biogenesis. Biochem Biophys Res Commun. 1993 Oct 15;196(1):55–60. doi: 10.1006/bbrc.1993.2215. [DOI] [PubMed] [Google Scholar]
  26. Izquierdo J. M., Ricart J., Ostronoff L. K., Egea G., Cuezva J. M. Changing patterns of transcriptional and post-transcriptional control of beta-F1-ATPase gene expression during mitochondrial biogenesis in liver. J Biol Chem. 1995 Apr 28;270(17):10342–10350. doi: 10.1074/jbc.270.17.10342. [DOI] [PubMed] [Google Scholar]
  27. Jones R., Henschen L., Mohell N., Nedergaard J. Requirement of gene transcription and protein synthesis for cold- and norepinephrine-induced stimulation of thyroxine deiodinase in rat brown adipose tissue. Biochim Biophys Acta. 1986 Dec 19;889(3):366–373. doi: 10.1016/0167-4889(86)90200-4. [DOI] [PubMed] [Google Scholar]
  28. Joste V., Goitom Z., Nelson B. D. Thyroid hormone regulation of nuclear-encoded mitochondrial inner membrane polypeptides of the liver. Eur J Biochem. 1989 Sep 1;184(1):255–260. doi: 10.1111/j.1432-1033.1989.tb15015.x. [DOI] [PubMed] [Google Scholar]
  29. Klingenspor M., Ivemeyer M., Wiesinger H., Haas K., Heldmaier G., Wiesner R. J. Biogenesis of thermogenic mitochondria in brown adipose tissue of Djungarian hamsters during cold adaptation. Biochem J. 1996 Jun 1;316(Pt 2):607–613. doi: 10.1042/bj3160607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kopecký J., Baudysová M., Zanotti F., Janíková D., Pavelka S., Houstek J. Synthesis of mitochondrial uncoupling protein in brown adipocytes differentiated in cell culture. J Biol Chem. 1990 Dec 25;265(36):22204–22209. [PubMed] [Google Scholar]
  31. Leonard J. L., Mellen S. A., Larsen P. R. Thyroxine 5'-deiodinase activity in brown adipose tissue. Endocrinology. 1983 Mar;112(3):1153–1155. doi: 10.1210/endo-112-3-1153. [DOI] [PubMed] [Google Scholar]
  32. Lindberg O., de Pierre J., Rylander E., Afzelius B. A. Studies of the mitochondrial energy-transfer system of brown adipose tissue. J Cell Biol. 1967 Jul;34(1):293–310. doi: 10.1083/jcb.34.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Luciakova K., Nelson B. D. Transcript levels for nuclear-encoded mammalian mitochondrial respiratory-chain components are regulated by thyroid hormone in an uncoordinated fashion. Eur J Biochem. 1992 Jul 1;207(1):247–251. doi: 10.1111/j.1432-1033.1992.tb17044.x. [DOI] [PubMed] [Google Scholar]
  34. Luciaková K., Kuzela S. Increased steady-state levels of several mitochondrial and nuclear gene transcripts in rat hepatoma with a low content of mitochondria. Eur J Biochem. 1992 May 1;205(3):1187–1193. doi: 10.1111/j.1432-1033.1992.tb16889.x. [DOI] [PubMed] [Google Scholar]
  35. Luis A. M., Izquierdo J. M., Ostronoff L. K., Salinas M., Santarén J. F., Cuezva J. M. Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA. J Biol Chem. 1993 Jan 25;268(3):1868–1875. [PubMed] [Google Scholar]
  36. Martin I., Giralt M., Viñas O., Iglesias R., Mampel T., Villarroya F. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat. Biochem J. 1995 Jun 15;308(Pt 3):749–752. doi: 10.1042/bj3080749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nedergaard J., Cannon B. Overview--preparation and properties of mitochondria from different sources. Methods Enzymol. 1979;55:3–28. doi: 10.1016/0076-6879(79)55003-4. [DOI] [PubMed] [Google Scholar]
  38. Preiss T., Chrzanowska-Lightowlers Z. M., Lightowlers R. N. The tissue-specific RNA-binding protein COLBP is differentially regulated during myogenesis. Biochim Biophys Acta. 1994 Apr 28;1221(3):286–289. doi: 10.1016/0167-4889(94)90252-6. [DOI] [PubMed] [Google Scholar]
  39. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schägger H., von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991 Dec;199(2):223–231. doi: 10.1016/0003-2697(91)90094-a. [DOI] [PubMed] [Google Scholar]
  41. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  42. Senior A. E. ATP synthesis by oxidative phosphorylation. Physiol Rev. 1988 Jan;68(1):177–231. doi: 10.1152/physrev.1988.68.1.177. [DOI] [PubMed] [Google Scholar]
  43. Silva J. E., Larsen P. R. Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature. 1983 Oct 20;305(5936):712–713. doi: 10.1038/305712a0. [DOI] [PubMed] [Google Scholar]
  44. Suzuki H., Hosokawa Y., Nishikimi M., Ozawa T. Existence of common homologous elements in the transcriptional regulatory regions of human nuclear genes and mitochondrial gene for the oxidative phosphorylation system. J Biol Chem. 1991 Feb 5;266(4):2333–2338. [PubMed] [Google Scholar]
  45. Svoboda P., Houstek J., Kopecký J., Drahota Z. Evaluation of the specific dicyclohexylcarbodiimide binding sites in brown adipose tissue mitochondria. Biochim Biophys Acta. 1981 Feb 12;634(2):321–330. doi: 10.1016/0005-2728(81)90150-x. [DOI] [PubMed] [Google Scholar]
  46. Thomsom J. F., Habeck D. A., Nance S. L., Beetham K. L. Ultrastructural and biochemical changes in brown fat in cold-exposed rats. J Cell Biol. 1969 Apr;41(1):312–334. doi: 10.1083/jcb.41.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Walker J. E., Collinson I. R. The role of the stalk in the coupling mechanism of F1F0-ATPases. FEBS Lett. 1994 Jun 6;346(1):39–43. doi: 10.1016/0014-5793(94)00368-8. [DOI] [PubMed] [Google Scholar]
  48. Yacoe M. E. Changes in mitochondrial components of hamster brown adipose tissue in response to cold acclimation. Biochem J. 1981 Feb 15;194(2):653–656. doi: 10.1042/bj1940653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yang H., Melera P. W. Application of the polymerase chain reaction to the ribonuclease protection assay. Biotechniques. 1992 Dec;13(6):922–927. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES