Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 15;323(Pt 2):415–419. doi: 10.1042/bj3230415

Regulation of N-linked core glycosylation: use of a site-directed mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors.

L Kasturi 1, H Chen 1, S H Shakin-Eshleman 1
PMCID: PMC1218335  PMID: 9163332

Abstract

N-linked glycosylation can profoundly affect protein expression and function. N-linked glycosylation usually occurs at the sequon Asn-Xaa-Ser/Thr, where Xaa is any amino acid residue except Pro. However, many Asn-Xaa-Ser/Thr sequons are glycosylated inefficiently or not at all for reasons that are poorly understood. We have used a site-directed mutagenesis approach to examine how the Xaa and hydroxy (Ser/Thr) amino acid residues in sequons influence core-glycosylation efficiency. We recently demonstrated that certain Xaa amino acids inhibit core glycosylation of the sequon, Asn37-Xaa-Ser, in rabies virus glycoprotein (RGP). Here we examine the impact of different Xaa residues on core-glycosylation efficiency when the Ser residue in this sequon is replaced with Thr. The core-glycosylation efficiencies of RGP variants with different Asn37-Xaa-Ser/Thr sequons were compared by using a cell-free translation/glycosylation system. Using this approach we confirm that four Asn-Xaa-Ser sequons are poor oligosaccharide acceptors: Asn-Trp-Ser, Asn-Asp-Ser, Asn-Glu-Ser and Asn-Leu-Ser. In contrast, Asn-Xaa-Thr sequons are efficiently glycosylated, even when Xaa=Trp, Asp, Glu or Leu. A comparison of the glycosylation status of Asn-Xaa-Ser and Asn-Xaa-Thr sequons in other glycoproteins confirms that sequons with Xaa=Trp, Asp, Glu or Leu are rarely glycosylated when Ser is the hydroxy amino acid residue, and that these sequons are unlikely to serve as glycosylation sites when introduced into proteins by site-directed mutagenesis.

Full Text

The Full Text of this article is available as a PDF (249.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aubert J. P., Helbecque N., Loucheux-Lefebvre M. H. Circular dichroism studies of synthetic Asn-X-Ser/Thr-containing peptides: Structure-glycosylation relationship. Arch Biochem Biophys. 1981 Apr 15;208(1):20–29. doi: 10.1016/0003-9861(81)90118-1. [DOI] [PubMed] [Google Scholar]
  2. Baldwin A. N., Shooter E. M. Zone mapping of the binding domain of the rat low affinity nerve growth factor receptor by the introduction of novel N-glycosylation sites. J Biol Chem. 1995 Mar 3;270(9):4594–4602. doi: 10.1074/jbc.270.9.4594. [DOI] [PubMed] [Google Scholar]
  3. Bause E., Hettkamp H., Legler G. Conformational aspects of N-glycosylation of proteins. Studies with linear and cyclic peptides as probes. Biochem J. 1982 Jun 1;203(3):761–768. doi: 10.1042/bj2030761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bause E., Hettkamp H. Primary structural requirements for N-glycosylation of peptides in rat liver. FEBS Lett. 1979 Dec 15;108(2):341–344. doi: 10.1016/0014-5793(79)80559-1. [DOI] [PubMed] [Google Scholar]
  5. Bause E., Legler G. The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J. 1981 Jun 1;195(3):639–644. doi: 10.1042/bj1950639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bause E. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J. 1983 Feb 1;209(2):331–336. doi: 10.1042/bj2090331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beeley J. G. Peptide chain conformation and the glycosylation of glycoproteins. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1051–1055. doi: 10.1016/0006-291x(77)90962-7. [DOI] [PubMed] [Google Scholar]
  8. Bergman L. W., Kuehl W. M. Addition of glucosamine and mannose to nascent immunoglobulin heavy chains. Biochemistry. 1977 Oct 4;16(20):4490–4497. doi: 10.1021/bi00639a025. [DOI] [PubMed] [Google Scholar]
  9. Curling E. M., Hayter P. M., Baines A. J., Bull A. T., Gull K., Strange P. G., Jenkins N. Recombinant human interferon-gamma. Differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem J. 1990 Dec 1;272(2):333–337. doi: 10.1042/bj2720333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gallagher P., Henneberry J., Wilson I., Sambrook J., Gething M. J. Addition of carbohydrate side chains at novel sites on influenza virus hemagglutinin can modulate the folding, transport, and activity of the molecule. J Cell Biol. 1988 Dec;107(6 Pt 1):2059–2073. doi: 10.1083/jcb.107.6.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gavel Y., von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990 Apr;3(5):433–442. doi: 10.1093/protein/3.5.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glabe C. G., Hanover J. A., Lennarz W. J. Glycosylation of ovalbumin nascent chains. The spatial relationship between translation and glycosylation. J Biol Chem. 1980 Oct 10;255(19):9236–9242. [PubMed] [Google Scholar]
  13. Guan J. L., Machamer C. E., Rose J. K. Glycosylation allows cell-surface transport of an anchored secretory protein. Cell. 1985 Sep;42(2):489–496. doi: 10.1016/0092-8674(85)90106-0. [DOI] [PubMed] [Google Scholar]
  14. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  15. Imperiali B., Shannon K. L. Differences between Asn-Xaa-Thr-containing peptides: a comparison of solution conformation and substrate behavior with oligosaccharyltransferase. Biochemistry. 1991 May 7;30(18):4374–4380. doi: 10.1021/bi00232a002. [DOI] [PubMed] [Google Scholar]
  16. Inouye S., Guo Y., Ling N., Shimasaki S. Site-specific mutagenesis of human follistatin. Biochem Biophys Res Commun. 1991 Aug 30;179(1):352–358. doi: 10.1016/0006-291x(91)91377-o. [DOI] [PubMed] [Google Scholar]
  17. Iorio R. M., Glickman R. L., Sheehan J. P. Inhibition of fusion by neutralizing monoclonal antibodies to the haemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J Gen Virol. 1992 May;73(Pt 5):1167–1176. doi: 10.1099/0022-1317-73-5-1167. [DOI] [PubMed] [Google Scholar]
  18. Kaplan H. A., Welply J. K., Lennarz W. J. Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. Biochim Biophys Acta. 1987 Jun 24;906(2):161–173. doi: 10.1016/0304-4157(87)90010-4. [DOI] [PubMed] [Google Scholar]
  19. Kasturi L., Eshleman J. R., Wunner W. H., Shakin-Eshleman S. H. The hydroxy amino acid in an Asn-X-Ser/Thr sequon can influence N-linked core glycosylation efficiency and the level of expression of a cell surface glycoprotein. J Biol Chem. 1995 Jun 16;270(24):14756–14761. doi: 10.1074/jbc.270.24.14756. [DOI] [PubMed] [Google Scholar]
  20. Kelleher D. J., Kreibich G., Gilmore R. Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell. 1992 Apr 3;69(1):55–65. doi: 10.1016/0092-8674(92)90118-v. [DOI] [PubMed] [Google Scholar]
  21. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  22. Ladenheim R. G., Seidah N. G., Rougeon F. N-linked glycosylation affects the processing of mouse submaxillary gland prorenin in transfected AtT20 cells. Eur J Biochem. 1991 Jun 1;198(2):535–540. doi: 10.1111/j.1432-1033.1991.tb16047.x. [DOI] [PubMed] [Google Scholar]
  23. Machamer C. E., Rose J. K. Influence of new glycosylation sites on expression of the vesicular stomatitis virus G protein at the plasma membrane. J Biol Chem. 1988 Apr 25;263(12):5948–5954. [PubMed] [Google Scholar]
  24. Marshall R. D. The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp. 1974;(40):17–26. [PubMed] [Google Scholar]
  25. Nakamura S., Takasaki H., Kobayashi K., Kato A. Hyperglycosylation of hen egg white lysozyme in yeast. J Biol Chem. 1993 Jun 15;268(17):12706–12712. [PubMed] [Google Scholar]
  26. Nilsson I. M., von Heijne G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem. 1993 Mar 15;268(8):5798–5801. [PubMed] [Google Scholar]
  27. Omura F., Otsu M., Yoshimori T., Tashiro Y., Kikuchi M. Non-lysosomal degradation of misfolded human lysozymes with and without an asparagine-linked glycosylation site. Eur J Biochem. 1992 Dec 1;210(2):591–599. doi: 10.1111/j.1432-1033.1992.tb17459.x. [DOI] [PubMed] [Google Scholar]
  28. PLUMMER T. H., Jr, HIRS C. H. ON THE STRUCTURE OF BOVINE PANCREATIC RIBONUCLEASE B. ISOLATION OF A GLYCOPEPTIDE. J Biol Chem. 1964 Aug;239:2530–2538. [PubMed] [Google Scholar]
  29. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  30. Picard V., Ersdal-Badju E., Bock S. C. Partial glycosylation of antithrombin III asparagine-135 is caused by the serine in the third position of its N-glycosylation consensus sequence and is responsible for production of the beta-antithrombin III isoform with enhanced heparin affinity. Biochemistry. 1995 Jul 4;34(26):8433–8440. doi: 10.1021/bi00026a026. [DOI] [PubMed] [Google Scholar]
  31. Pohl G., Källström M., Bergsdorf N., Wallén P., Jörnvall H. Tissue plasminogen activator: peptide analyses confirm an indirectly derived amino acid sequence, identify the active site serine residue, establish glycosylation sites, and localize variant differences. Biochemistry. 1984 Jul 31;23(16):3701–3707. doi: 10.1021/bi00311a020. [DOI] [PubMed] [Google Scholar]
  32. Roberts P. C., Garten W., Klenk H. D. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. J Virol. 1993 Jun;67(6):3048–3060. doi: 10.1128/jvi.67.6.3048-3060.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rothman J. E., Katz F. N., Lodish H. F. Glycosylation of a membrane protein is restricted to the growing polypeptide chain but is not necessary for insertion as a transmembrane protein. Cell. 1978 Dec;15(4):1447–1454. doi: 10.1016/0092-8674(78)90068-5. [DOI] [PubMed] [Google Scholar]
  34. Scheele G. Methods for the study of protein translocation across the RER membrane using the reticulocyte lysate translation system and canine pancreatic microsomal membranes. Methods Enzymol. 1983;96:94–111. doi: 10.1016/s0076-6879(83)96011-1. [DOI] [PubMed] [Google Scholar]
  35. Shakin-Eshleman S. H., Remaley A. T., Eshleman J. R., Wunner W. H., Spitalnik S. L. N-linked glycosylation of rabies virus glycoprotein. Individual sequons differ in their glycosylation efficiencies and influence on cell surface expression. J Biol Chem. 1992 May 25;267(15):10690–10698. [PubMed] [Google Scholar]
  36. Shakin-Eshleman S. H., Spitalnik S. L., Kasturi L. The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked core-glycosylation efficiency. J Biol Chem. 1996 Mar 15;271(11):6363–6366. doi: 10.1074/jbc.271.11.6363. [DOI] [PubMed] [Google Scholar]
  37. Shakin-Eshleman S. H., Wunner W. H., Spitalnik S. L. Efficiency of N-linked core glycosylation at asparagine-319 of rabies virus glycoprotein is altered by deletions C-terminal to the glycosylation sequon. Biochemistry. 1993 Sep 14;32(36):9465–9472. doi: 10.1021/bi00087a026. [DOI] [PubMed] [Google Scholar]
  38. Stevenson S. C., Wang S., Deng L., Tall A. R. Human plasma cholesteryl ester transfer protein consists of a mixture of two forms reflecting variable glycosylation at asparagine 341. Biochemistry. 1993 May 18;32(19):5121–5126. doi: 10.1021/bi00070a021. [DOI] [PubMed] [Google Scholar]
  39. Thim L., Bjoern S., Christensen M., Nicolaisen E. M., Lund-Hansen T., Pedersen A. H., Hedner U. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. Biochemistry. 1988 Oct 4;27(20):7785–7793. doi: 10.1021/bi00420a030. [DOI] [PubMed] [Google Scholar]
  40. Wright A., Tao M. H., Kabat E. A., Morrison S. L. Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J. 1991 Oct;10(10):2717–2723. doi: 10.1002/j.1460-2075.1991.tb07819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES