Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 15;323(Pt 2):427–433. doi: 10.1042/bj3230427

Characterization of the substrate specificity of the major cysteine protease (cruzipain) from Trypanosoma cruzi using a portion-mixing combinatorial library and fluorogenic peptides.

E D Nery 1, M A Juliano 1, M Meldal 1, I Svendsen 1, J Scharfstein 1, A Walmsley 1, L Juliano 1
PMCID: PMC1218337  PMID: 9163334

Abstract

The substrate specificity of the major cysteinyl proteinase of the parasitic protozoan Trypanosoma cruzi (cruzipain) was investigated, by combinatorial replacement of amino acid residues at positions P5-P'5, using a fluorescent quenched solid-phase library assay. Positively charged residues appear to be a general preference in the P5-P3 and the P'5-P'3 positions, while a hydrophobic residue was always required at the P2 position. A broad range of amino acids could be accepted at the P'1 position. A clear difference in terms of specificity between cruzipain and human cathepsin L was observed for the accommodation of Pro at the P2 position. The P1 specificity was investigated by a more detailed enzyme kinetic analysis using peptidyl-MCA (where MCA is methylcoumarin amide) and Abz-peptidyl-EDDnp [where Abz is o-aminobenzoic acid and EDDnp is N-(2,4-dinitrophenyl)ethylenediamine] as substrates, and the results were compared with those obtained using human cathepsin L. Cruzipain showed a clear preference for benzyl-Cys or Arg at the P1 position. Human cathepsin L presented similar behaviour to that of cruzipain for the hydrolysis of the epsilon-NH2-Cap-Leu-Xaa-MCA (where Cap is epsilon-aminocaproyl) and Abz-Lys-Leu-Xaa-Phe-Ser-Lys-Gln-EDDnp series, whereas the mammalian enzyme was able to tolerate large P1 residues, such as phenylalanine, better than cruzipain in the latter series.

Full Text

The Full Text of this article is available as a PDF (234.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alves L. C., Almeida P. C., Franzoni L., Juliano L., Juliano M. A. Synthesis of N alpha-protected aminoacyl 7-amino-4-methyl-coumarin amide by phosphorous oxychloride and preparation of specific fluorogenic substrates for papain. Pept Res. 1996 Mar-Apr;9(2):92–96. [PubMed] [Google Scholar]
  2. Aslund L., Henriksson J., Campetella O., Frasch A. C., Pettersson U., Cazzulo J. J. The C-terminal extension of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi. Mol Biochem Parasitol. 1991 Apr;45(2):345–347. doi: 10.1016/0166-6851(91)90103-d. [DOI] [PubMed] [Google Scholar]
  3. Auzanneau F. I., Meldal M., Bock K. Synthesis, characterization and biocompatibility of PEGA resins. J Pept Sci. 1995 Jan-Feb;1(1):31–44. doi: 10.1002/psc.310010106. [DOI] [PubMed] [Google Scholar]
  4. Barrett A. J., Kembhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J. 1982 Jan 1;201(1):189–198. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bontempi E., Martinez J., Cazzulo J. J. Subcellular localization of a cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol. 1989 Feb;33(1):43–47. doi: 10.1016/0166-6851(89)90040-6. [DOI] [PubMed] [Google Scholar]
  6. Brömme D., Steinert A., Friebe S., Fittkau S., Wiederanders B., Kirschke H. The specificity of bovine spleen cathepsin S. A comparison with rat liver cathepsins L and B. Biochem J. 1989 Dec 1;264(2):475–481. doi: 10.1042/bj2640475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chagas J. R., Juliano L., Prado E. S. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem. 1991 Feb 1;192(2):419–425. doi: 10.1016/0003-2697(91)90558-b. [DOI] [PubMed] [Google Scholar]
  8. Chagas J. R., Portaro F. C., Hirata I. Y., Almeida P. C., Juliano M. A., Juliano L., Prado E. S. Determinants of the unusual cleavage specificity of lysyl-bradykinin-releasing kallikreins. Biochem J. 1995 Feb 15;306(Pt 1):63–69. doi: 10.1042/bj3060063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Del Nery E., Chagas J. R., Juliano M. A., Prado E. S., Juliano L. Evaluation of the extent of the binding site in human tissue kallikrein by synthetic substrates with sequences of human kininogen fragments. Biochem J. 1995 Nov 15;312(Pt 1):233–238. doi: 10.1042/bj3120233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eakin A. E., Mills A. A., Harth G., McKerrow J. H., Craik C. S. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J Biol Chem. 1992 Apr 15;267(11):7411–7420. [PubMed] [Google Scholar]
  11. García-Echeverría C., Rich D. H. Effect of P2' substituents on kinetic constants for hydrolysis by cysteine proteinases. Biochem Biophys Res Commun. 1992 Sep 16;187(2):615–619. doi: 10.1016/0006-291x(92)91239-m. [DOI] [PubMed] [Google Scholar]
  12. Gray C. J., Boukouvalas J., Szawelski R. J., Wharton C. W. Benzyloxycarbonylphenylalanylcitrulline p-nitroanilide as a substrate for papain and other plant cysteine proteinases. Biochem J. 1984 Apr 1;219(1):325–328. doi: 10.1042/bj2190325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grøn H., Breddam K. Interdependency of the binding subsites in subtilisin. Biochemistry. 1992 Sep 22;31(37):8967–8971. doi: 10.1021/bi00152a037. [DOI] [PubMed] [Google Scholar]
  14. Jia Z., Hasnain S., Hirama T., Lee X., Mort J. S., To R., Huber C. P. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. Implications for structure-based inhibitor design. J Biol Chem. 1995 Mar 10;270(10):5527–5533. doi: 10.1074/jbc.270.10.5527. [DOI] [PubMed] [Google Scholar]
  15. Juliano L., Paiva A. C. Conformation of angiotensin II in aqueous solution. Titration of several peptide analogs and homologs. Biochemistry. 1974 May 21;13(11):2445–2450. doi: 10.1021/bi00708a032. [DOI] [PubMed] [Google Scholar]
  16. Lam K. S., Salmon S. E., Hersh E. M., Hruby V. J., Kazmierski W. M., Knapp R. J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature. 1991 Nov 7;354(6348):82–84. doi: 10.1038/354082a0. [DOI] [PubMed] [Google Scholar]
  17. Lima A. P., Scharfstein J., Storer A. C., Ménard R. Temperature-dependent substrate inhibition of the cysteine proteinase (GP57/51) from Trypanosoma cruzi. Mol Biochem Parasitol. 1992 Dec;56(2):335–338. doi: 10.1016/0166-6851(92)90183-k. [DOI] [PubMed] [Google Scholar]
  18. McGrath M. E., Eakin A. E., Engel J. C., McKerrow J. H., Craik C. S., Fletterick R. J. The crystal structure of cruzain: a therapeutic target for Chagas' disease. J Mol Biol. 1995 Mar 24;247(2):251–259. doi: 10.1006/jmbi.1994.0137. [DOI] [PubMed] [Google Scholar]
  19. McKerrow J. H. Parasite proteases. Exp Parasitol. 1989 Jan;68(1):111–115. doi: 10.1016/0014-4894(89)90016-7. [DOI] [PubMed] [Google Scholar]
  20. Meirelles M. N., Juliano L., Carmona E., Silva S. G., Costa E. M., Murta A. C., Scharfstein J. Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol. 1992 Jun;52(2):175–184. doi: 10.1016/0166-6851(92)90050-t. [DOI] [PubMed] [Google Scholar]
  21. Meldal M., Breddam K. Anthranilamide and nitrotyrosine as a donor-acceptor pair in internally quenched fluorescent substrates for endopeptidases: multicolumn peptide synthesis of enzyme substrates for subtilisin Carlsberg and pepsin. Anal Biochem. 1991 May 15;195(1):141–147. doi: 10.1016/0003-2697(91)90309-h. [DOI] [PubMed] [Google Scholar]
  22. Meldal M., Svendsen I., Breddam K., Auzanneau F. I. Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3314–3318. doi: 10.1073/pnas.91.8.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murta A. C., Persechini P. M., Padron T. de S., de Souza W., Guimarães J. A., Scharfstein J. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol. 1990 Nov;43(1):27–38. doi: 10.1016/0166-6851(90)90127-8. [DOI] [PubMed] [Google Scholar]
  24. Ménard R., Carmona E., Plouffe C., Brömme D., Konishi Y., Lefebvre J., Storer A. C. The specificity of the S1' subsite of cysteine proteases. FEBS Lett. 1993 Aug 9;328(1-2):107–110. doi: 10.1016/0014-5793(93)80975-z. [DOI] [PubMed] [Google Scholar]
  25. Scharfstein J., Schechter M., Senna M., Peralta J. M., Mendonça-Previato L., Miles M. A. Trypanosoma cruzi: characterization and isolation of a 57/51,000 m.w. surface glycoprotein (GP57/51) expressed by epimastigotes and bloodstream trypomastigotes. J Immunol. 1986 Aug 15;137(4):1336–1341. [PubMed] [Google Scholar]
  26. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  27. Serveau C., Lalmanach G., Juliano M. A., Scharfstein J., Juliano L., Gauthier F. Investigation of the substrate specificity of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, through the use of cystatin-derived substrates and inhibitors. Biochem J. 1996 Feb 1;313(Pt 3):951–956. doi: 10.1042/bj3130951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Turk D., Podobnik M., Popovic T., Katunuma N., Bode W., Huber R., Turk V. Crystal structure of cathepsin B inhibited with CA030 at 2.0-A resolution: A basis for the design of specific epoxysuccinyl inhibitors. Biochemistry. 1995 Apr 11;34(14):4791–4797. doi: 10.1021/bi00014a037. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES