Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 15;323(Pt 2):445–450. doi: 10.1042/bj3230445

Endoplasmic reticulum Ca2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic beta-cell.

P C Guest 1, E M Bailyes 1, J C Hutton 1
PMCID: PMC1218339  PMID: 9163336

Abstract

The role of intracellular Ca2+ in the proteolytic processing and intracellular transport of secretory granule proproteins was investigated by pulse-chase radiolabelling of isolated rat islets of Langerhans. The conversion of proinsulin was inhibited by depletion of medium Ca2+ with EGTA and by blocking the transport of Ca2+ into cells with the Ca2+-channel antagonists verapamil, nifedipine and NiCl2. Proinsulin conversion was also reduced by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, indicating that the process requires transport of Ca2+ into the endoplasmic reticulum. This was supported by the finding that proinsulin processing was inhibited when Ca2+ was depleted before or during pulse-labelling, but not after transport of the protein to post-endoplasmic-reticulum compartments. Similarly, the inhibition of proinsulin processing was reversed by re-introduction of medium Ca2+ around the time of radiolabelling, but not after 15 min of chase incubation. Ca2+ depletion also decreased proteolytic maturation of the prohormone convertases PC1, PC2 and carboxypeptidase H. Secretion experiments suggested that the rate and extent of proinsulin transport into secretory granules were inhibited marginally by Ca2+ depletion, whereas those of the convertases were markedly impeded. Inhibition of proinsulin conversion by Ca2+ depletion was thus not simply related to the Ca2+-dependencies of mature PC1 and PC2, but also to a requirement for endoplasmic reticulum Ca2+ in proteolytic maturation of the convertases and in their transfer to secretory granules. The results also suggest that the Ca2+ required for prohormone processing in the granules enters the secretory pathway via the endoplasmic reticulum.

Full Text

The Full Text of this article is available as a PDF (276.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarcón C., Lincoln B., Rhodes C. J. The biosynthesis of the subtilisin-related proprotein convertase PC3, but no that of the PC2 convertase, is regulated by glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J Biol Chem. 1993 Feb 25;268(6):4276–4280. [PubMed] [Google Scholar]
  2. Bailyes E. M., Shennan K. I., Seal A. J., Smeekens S. P., Steiner D. F., Hutton J. C., Docherty K. A member of the eukaryotic subtilisin family (PC3) has the enzymic properties of the type 1 proinsulin-converting endopeptidase. Biochem J. 1992 Jul 15;285(Pt 2):391–394. doi: 10.1042/bj2850391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailyes E. M., Shennan K. I., Usac E. F., Arden S. D., Guest P. C., Docherty K., Hutton J. C. Differences between the catalytic properties of recombinant human PC2 and endogenous rat PC2. Biochem J. 1995 Jul 15;309(Pt 2):587–594. doi: 10.1042/bj3090587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benjannet S., Reudelhuber T., Mercure C., Rondeau N., Chrétien M., Seidah N. G. Proprotein conversion is determined by a multiplicity of factors including convertase processing, substrate specificity, and intracellular environment. Cell type-specific processing of human prorenin by the convertase PC1. J Biol Chem. 1992 Jun 5;267(16):11417–11423. [PubMed] [Google Scholar]
  5. Benjannet S., Rondeau N., Paquet L., Boudreault A., Lazure C., Chrétien M., Seidah N. G. Comparative biosynthesis, covalent post-translational modifications and efficiency of prosegment cleavage of the prohormone convertases PC1 and PC2: glycosylation, sulphation and identification of the intracellular site of prosegment cleavage of PC1 and PC2. Biochem J. 1993 Sep 15;294(Pt 3):735–743. doi: 10.1042/bj2940735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett D. L., Bailyes E. M., Nielsen E., Guest P. C., Rutherford N. G., Arden S. D., Hutton J. C. Identification of the type 2 proinsulin processing endopeptidase as PC2, a member of the eukaryote subtilisin family. J Biol Chem. 1992 Jul 25;267(21):15229–15236. [PubMed] [Google Scholar]
  7. Borowitz J. L., Matthews E. K. Calcium exchangeability in subcellular fractions of pancreatic islet cells. J Cell Sci. 1980 Feb;41:233–243. doi: 10.1242/jcs.41.1.233. [DOI] [PubMed] [Google Scholar]
  8. Braks J. A., Martens G. J. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell. 1994 Jul 29;78(2):263–273. doi: 10.1016/0092-8674(94)90296-8. [DOI] [PubMed] [Google Scholar]
  9. Chanat E., Huttner W. B. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol. 1991 Dec;115(6):1505–1519. doi: 10.1083/jcb.115.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Creemers J. W., Vey M., Schäfer W., Ayoubi T. A., Roebroek A. J., Klenk H. D., Garten W., Van de Ven W. J. Endoproteolytic cleavage of its propeptide is a prerequisite for efficient transport of furin out of the endoplasmic reticulum. J Biol Chem. 1995 Feb 10;270(6):2695–2702. doi: 10.1074/jbc.270.6.2695. [DOI] [PubMed] [Google Scholar]
  11. Davidson H. W., Hutton J. C. The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J. 1987 Jul 15;245(2):575–582. doi: 10.1042/bj2450575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davidson H. W., Rhodes C. J., Hutton J. C. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature. 1988 May 5;333(6168):93–96. doi: 10.1038/333093a0. [DOI] [PubMed] [Google Scholar]
  13. Deeney J. T., Tornheim K., Korchak H. M., Prentki M., Corkey B. E. Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic beta-cells. J Biol Chem. 1992 Oct 5;267(28):19840–19845. [PubMed] [Google Scholar]
  14. Fricker L. D., Das B., Angeletti R. H. Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3.4.17.10). J Biol Chem. 1990 Feb 15;265(5):2476–2482. [PubMed] [Google Scholar]
  15. Fricker L. D., Devi L. Posttranslational processing of carboxypeptidase E, a neuropeptide-processing enzyme, in AtT-20 cells and bovine pituitary secretory granules. J Neurochem. 1993 Oct;61(4):1404–1415. doi: 10.1111/j.1471-4159.1993.tb13634.x. [DOI] [PubMed] [Google Scholar]
  16. Guest P. C., Arden S. D., Bennett D. L., Clark A., Rutherford N. G., Hutton J. C. The post-translational processing and intracellular sorting of PC2 in the islets of Langerhans. J Biol Chem. 1992 Nov 5;267(31):22401–22406. [PubMed] [Google Scholar]
  17. Guest P. C., Arden S. D., Rutherford N. G., Hutton J. C. The post-translational processing and intracellular sorting of carboxypeptidase H in the islets of Langerhans. Mol Cell Endocrinol. 1995 Aug 30;113(1):99–108. doi: 10.1016/0303-7207(95)03619-i. [DOI] [PubMed] [Google Scholar]
  18. Guest P. C., Rhodes C. J., Hutton J. C. Regulation of the biosynthesis of insulin-secretory-granule proteins. Co-ordinate translational control is exerted on some, but not all, granule matrix constituents. Biochem J. 1989 Jan 15;257(2):431–437. doi: 10.1042/bj2570431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Halban P. A., Irminger J. C. Sorting and processing of secretory proteins. Biochem J. 1994 Apr 1;299(Pt 1):1–18. doi: 10.1042/bj2990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heaton D. A., Millward B. A., Gray P., Tun Y., Hales C. N., Pyke D. A., Leslie R. D. Evidence of beta cell dysfunction which does not lead on to diabetes: a study of identical twins of insulin dependent diabetics. Br Med J (Clin Res Ed) 1987 Jan 17;294(6565):145–146. doi: 10.1136/bmj.294.6565.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Howell S. L., Montague W., Tyhurst M. Calcium distribution in islets of Langerhans: a study of calcium concentrations and of calcium accumulation in B cell organelles. J Cell Sci. 1975 Nov;19(2):395–409. doi: 10.1242/jcs.19.2.395. [DOI] [PubMed] [Google Scholar]
  22. Hutton J. C., Penn E. J., Peshavaria M. Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J. 1983 Feb 15;210(2):297–305. doi: 10.1042/bj2100297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Islam M. S., Berggren P. O. Mobilization of Ca2+ by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone in permeabilized insulin-secreting RINm5F cells: evidence for separate uptake and release compartments in inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. Biochem J. 1993 Jul 15;293(Pt 2):423–429. doi: 10.1042/bj2930423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Islam M. S., Rorsman P., Berggren P. O. Ca(2+)-induced Ca2+ release in insulin-secreting cells. FEBS Lett. 1992 Jan 27;296(3):287–291. doi: 10.1016/0014-5793(92)80306-2. [DOI] [PubMed] [Google Scholar]
  25. Klenk H. D., Garten W., Rott R. Inhibition of proteolytic cleavage of the hemagglutinin of influenza virus by the calcium-specific ionophore A23187. EMBO J. 1984 Dec 1;3(12):2911–2915. doi: 10.1002/j.1460-2075.1984.tb02231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lenzen S., Klöppel G. Intracellular localization of calcium in pancreatic B-cells in relation to insulin secretion by the perfused ob/ob mouse pancreas. Endocrinology. 1984 Mar;114(3):1012–1020. doi: 10.1210/endo-114-3-1012. [DOI] [PubMed] [Google Scholar]
  27. Levy J., Herchuelz A., Sener A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. XX. fasting: a model for altered glucose recognition by the B-cell. Metabolism. 1976 May;25(5):583–591. doi: 10.1016/0026-0495(76)90012-3. [DOI] [PubMed] [Google Scholar]
  28. Malaisse W. J., Sener A. Interaction between D-glucose and Ca2+ in the priming of the pancreatic B-cell. Diabetes Res. 1987 Jan;4(1):5–8. [PubMed] [Google Scholar]
  29. Martens G. J., Braks J. A., Eib D. W., Zhou Y., Lindberg I. The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5784–5787. doi: 10.1073/pnas.91.13.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Matthews G., Shennan K. I., Seal A. J., Taylor N. A., Colman A., Docherty K. Autocatalytic maturation of the prohormone convertase PC2. J Biol Chem. 1994 Jan 7;269(1):588–592. [PubMed] [Google Scholar]
  31. Oda K. Calcium depletion blocks proteolytic cleavages of plasma protein precursors which occur at the Golgi and/or trans-Golgi network. Possible involvement of Ca(2+)-dependent Golgi endoproteases. J Biol Chem. 1992 Aug 25;267(24):17465–17471. [PubMed] [Google Scholar]
  32. Orci L., Ravazzola M., Storch M. J., Anderson R. G., Vassalli J. D., Perrelet A. Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell. 1987 Jun 19;49(6):865–868. doi: 10.1016/0092-8674(87)90624-6. [DOI] [PubMed] [Google Scholar]
  33. Parkinson D. Two soluble forms of bovine carboxypeptidase H have different NH2-terminal sequences. J Biol Chem. 1990 Oct 5;265(28):17101–17105. [PubMed] [Google Scholar]
  34. Phillips J. H. Transport of Ca2+ and Na+ across the chromaffin-granule membrane. Biochem J. 1981 Oct 15;200(1):99–107. doi: 10.1042/bj2000099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pind S. N., Nuoffer C., McCaffery J. M., Plutner H., Davidson H. W., Farquhar M. G., Balch W. E. Rab1 and Ca2+ are required for the fusion of carrier vesicles mediating endoplasmic reticulum to Golgi transport. J Cell Biol. 1994 Apr;125(2):239–252. doi: 10.1083/jcb.125.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Prentki M., Biden T. J., Janjic D., Irvine R. F., Berridge M. J., Wollheim C. B. Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature. 1984 Jun 7;309(5968):562–564. doi: 10.1038/309562a0. [DOI] [PubMed] [Google Scholar]
  37. Ravazzola M., Malaisse-Lagae F., Amherdt M., Perrelet A., Malaisse W. J., Orci L. Patterns of calcium localization in pancreatic endocrine cells. J Cell Sci. 1976 Jun;21(1):107–117. doi: 10.1242/jcs.21.1.107. [DOI] [PubMed] [Google Scholar]
  38. Rhodes C. J., Lincoln B., Shoelson S. E. Preferential cleavage of des-31,32-proinsulin over intact proinsulin by the insulin secretory granule type II endopeptidase. Implication of a favored route for prohormone processing. J Biol Chem. 1992 Nov 15;267(32):22719–22727. [PubMed] [Google Scholar]
  39. Rorsman P., Abrahamsson H., Gylfe E., Hellman B. Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic beta-cells. FEBS Lett. 1984 May 7;170(1):196–200. doi: 10.1016/0014-5793(84)81398-8. [DOI] [PubMed] [Google Scholar]
  40. Shen F. S., Seidah N. G., Lindberg I. Biosynthesis of the prohormone convertase PC2 in Chinese hamster ovary cells and in rat insulinoma cells. J Biol Chem. 1993 Nov 25;268(33):24910–24915. [PubMed] [Google Scholar]
  41. Shennan K. I., Smeekens S. P., Steiner D. F., Docherty K. Characterization of PC2, a mammalian Kex2 homologue, following expression of the cDNA in microinjected Xenopus oocytes. FEBS Lett. 1991 Jun 24;284(2):277–280. doi: 10.1016/0014-5793(91)80703-6. [DOI] [PubMed] [Google Scholar]
  42. Shennan K. I., Taylor N. A., Docherty K. Calcium- and pH-dependent aggregation and membrane association of the precursor of the prohormone convertase PC2. J Biol Chem. 1994 Jul 15;269(28):18646–18650. [PubMed] [Google Scholar]
  43. Shennan K. I., Taylor N. A., Jermany J. L., Matthews G., Docherty K. Differences in pH optima and calcium requirements for maturation of the prohormone convertases PC2 and PC3 indicates different intracellular locations for these events. J Biol Chem. 1995 Jan 20;270(3):1402–1407. doi: 10.1074/jbc.270.3.1402. [DOI] [PubMed] [Google Scholar]
  44. Siegel E. G., Wollheim C. B., Sharp G. W., Herberg L., Renold A. E. Defective calcium handling and insulin release in islets from diabetic Chinese hamsters. Biochem J. 1979 Apr 15;180(1):233–236. doi: 10.1042/bj1800233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sizonenko S., Irminger J. C., Buhler L., Deng S., Morel P., Halban P. A. Kinetics of proinsulin conversion in human islets. Diabetes. 1993 Jun;42(6):933–936. doi: 10.2337/diab.42.6.933. [DOI] [PubMed] [Google Scholar]
  46. Takemura H., Hughes A. R., Thastrup O., Putney J. W., Jr Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem. 1989 Jul 25;264(21):12266–12271. [PubMed] [Google Scholar]
  47. Wada I., Rindress D., Cameron P. H., Ou W. J., Doherty J. J., 2nd, Louvard D., Bell A. W., Dignard D., Thomas D. Y., Bergeron J. J. SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem. 1991 Oct 15;266(29):19599–19610. [PubMed] [Google Scholar]
  48. Ward W. K., LaCava E. C., Paquette T. L., Beard J. C., Wallum B. J., Porte D., Jr Disproportionate elevation of immunoreactive proinsulin in type 2 (non-insulin-dependent) diabetes mellitus and in experimental insulin resistance. Diabetologia. 1987 Sep;30(9):698–702. doi: 10.1007/BF00296991. [DOI] [PubMed] [Google Scholar]
  49. Wollheim C. B., Pozzan T. Correlation between cytosolic free Ca2+ and insulin release in an insulin-secreting cell line. J Biol Chem. 1984 Feb 25;259(4):2262–2267. [PubMed] [Google Scholar]
  50. Wollheim C. B., Sharp G. W. Regulation of insulin release by calcium. Physiol Rev. 1981 Oct;61(4):914–973. doi: 10.1152/physrev.1981.61.4.914. [DOI] [PubMed] [Google Scholar]
  51. Zhou A., Mains R. E. Endoproteolytic processing of proopiomelanocortin and prohormone convertases 1 and 2 in neuroendocrine cells overexpressing prohormone convertases 1 or 2. J Biol Chem. 1994 Jul 1;269(26):17440–17447. [PubMed] [Google Scholar]
  52. Zhou Y., Lindberg I. Purification and characterization of the prohormone convertase PC1(PC3). J Biol Chem. 1993 Mar 15;268(8):5615–5623. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES