Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 15;323(Pt 2):463–467. doi: 10.1042/bj3230463

Rapid Ca2+ influx induced by the action of dibutylhydroquinone and glucagon in the perfused rat liver.

T L Applegate 1, A Karjalainen 1, F L Bygrave 1
PMCID: PMC1218342  PMID: 9163339

Abstract

Glucagon induces a slight Ca2+ efflux when administered to the perfused rat liver. However, the hormone promotes rapid and significant Ca2+ influx after the prior administration of 2, 5-di(t-butyl)-1,4-hydroquinone (BHQ), an agent that promotes Ca2+ release from the endoplasmic reticulum (ER). The concentrations of glucagon that promote Ca2+ influx are similar to those that promote glycogenolysis and gluconeogenesis in isolated hepatocytes. The permeable analogue of cAMP, but not that of cGMP, is able to duplicate the Ca2+-mobilizing effects of glucagon. The influx of Ca2+ into liver is blocked by Ni2+. Administration of sodium azide, an inhibitor of mitochondrial electron transport, also blocks the BHQ plus glucagon-induced Ca2+ influx and this is reversed when azide administration is terminated. The actions of azide are evident within 60 s after administration or withdrawal, and also occur when either oligomycin or fructose is co-administered; this provides evidence for an effect of azide independent of cellular ATP depletion. Measurement of total calcium in mitochondria that were isolated rapidly from perfused livers after the combined administration of glucagon and BHQ confirmed that large quantities of extracellular Ca2+ had entered these organelles. These experiments provide evidence that in the perfused rat liver the artificial emptying of the ER Ca2+ pool allows glucagon to promote rapid and sustained Ca2+ influx that seems to terminate in mitochondria.

Full Text

The Full Text of this article is available as a PDF (352.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali H., Maeyama K., Sagi-Eisenberg R., Beaven M. A. Antigen and thapsigargin promote influx of Ca2+ in rat basophilic RBL-2H3 cells by ostensibly similar mechanisms that allow filling of inositol 1,4,5-trisphosphate-sensitive and mitochondrial Ca2+ stores. Biochem J. 1994 Dec 1;304(Pt 2):431–440. doi: 10.1042/bj3040431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altin J. G., Bygrave F. L. Second messengers and the regulation of Ca2+ fluxes by Ca2+-mobilizing agonists in rat liver. Biol Rev Camb Philos Soc. 1988 Nov;63(4):551–611. doi: 10.1111/j.1469-185x.1988.tb00670.x. [DOI] [PubMed] [Google Scholar]
  3. Altin J. G., Bygrave F. L. Synergistic stimulation of Ca2+ uptake by glucagon and Ca2+-mobilizing hormones in the perfused rat liver. A role for mitochondria in long-term Ca2+ homoeostasis. Biochem J. 1986 Sep 15;238(3):653–661. doi: 10.1042/bj2380653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anundi I., King J., Owen D. A., Schneider H., Lemasters J. J., Thurman R. G. Fructose prevents hypoxic cell death in liver. Am J Physiol. 1987 Sep;253(3 Pt 1):G390–G396. doi: 10.1152/ajpgi.1987.253.3.G390. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  6. Bird G. S., Bian X., Putney J. W., Jr Calcium entry signal? Nature. 1995 Feb 9;373(6514):481–482. doi: 10.1038/373481b0. [DOI] [PubMed] [Google Scholar]
  7. Budd S. L., Nicholls D. G. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J Neurochem. 1996 Jan;66(1):403–411. doi: 10.1046/j.1471-4159.1996.66010403.x. [DOI] [PubMed] [Google Scholar]
  8. Bygrave F. L., Benedetti A. Calcium: its modulation in liver by cross-talk between the actions of glucagon and calcium-mobilizing agonists. Biochem J. 1993 Nov 15;296(Pt 1):1–14. doi: 10.1042/bj2960001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bygrave F. L., Benedetti A. What is the concentration of calcium ions in the endoplasmic reticulum? Cell Calcium. 1996 Jun;19(6):547–551. doi: 10.1016/s0143-4160(96)90064-0. [DOI] [PubMed] [Google Scholar]
  10. Bygrave F. L. Mitochondria and the control of intracellular calcium. Biol Rev Camb Philos Soc. 1978 Feb;53(1):43–79. doi: 10.1111/j.1469-185x.1978.tb00992.x. [DOI] [PubMed] [Google Scholar]
  11. Bygrave F. L., Roberts H. R. Regulation of cellular calcium through signaling cross-talk involves an intricate interplay between the actions of receptors, G-proteins, and second messengers. FASEB J. 1995 Oct;9(13):1297–1303. doi: 10.1096/fasebj.9.13.7557019. [DOI] [PubMed] [Google Scholar]
  12. Crofts J. N., Barritt G. J. The liver cell plasma membrane Ca2+ inflow systems exhibit a broad specificity for divalent metal ions. Biochem J. 1990 Aug 1;269(3):579–587. doi: 10.1042/bj2690579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gamberucci A., Innocenti B., Fulceri R., Bànhegyi G., Giunti R., Pozzan T., Benedetti A. Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. J Biol Chem. 1994 Sep 23;269(38):23597–23602. [PubMed] [Google Scholar]
  14. Gunter K. K., Gunter T. E. Transport of calcium by mitochondria. J Bioenerg Biomembr. 1994 Oct;26(5):471–485. doi: 10.1007/BF00762732. [DOI] [PubMed] [Google Scholar]
  15. Gunter T. E., Gunter K. K., Sheu S. S., Gavin C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994 Aug;267(2 Pt 1):C313–C339. doi: 10.1152/ajpcell.1994.267.2.C313. [DOI] [PubMed] [Google Scholar]
  16. Hamada Y., Karjalainen A., Setchell B. A., Millard J. E., Bygrave F. L. Concomitant stimulation by vasopressin of biliary and perfusate calcium fluxes in the perfused rat liver. Biochem J. 1992 Jan 15;281(Pt 2):387–392. doi: 10.1042/bj2810387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoek J. B., Farber J. L., Thomas A. P., Wang X. Calcium ion-dependent signalling and mitochondrial dysfunction: mitochondrial calcium uptake during hormonal stimulation in intact liver cells and its implication for the mitochondrial permeability transition. Biochim Biophys Acta. 1995 May 24;1271(1):93–102. doi: 10.1016/0925-4439(95)00015-v. [DOI] [PubMed] [Google Scholar]
  18. Hughes B. P., Barritt G. J. Inhibition of the liver cell receptor-activated Ca2+ inflow system by metal ion inhibitors of voltage-operated Ca2+ channels but not by other inhibitors of Ca2+ inflow. Biochim Biophys Acta. 1989 Oct 9;1013(3):197–205. doi: 10.1016/0167-4889(89)90135-3. [DOI] [PubMed] [Google Scholar]
  19. Karjalainen A., Bygrave F. L. The synergistic action (cross-talk) of glucagon and vasopressin induces early bile flow and plasma-membrane calcium fluxes in the perfused rat liver. Biochem J. 1994 Jul 1;301(Pt 1):187–192. doi: 10.1042/bj3010187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kass G. E., Llopis J., Chow S. C., Duddy S. K., Orrenius S. Receptor-operated calcium influx in rat hepatocytes. Identification and characterization using manganese. J Biol Chem. 1990 Oct 15;265(29):17486–17492. [PubMed] [Google Scholar]
  21. Lawrie A. M., Rizzuto R., Pozzan T., Simpson A. W. A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem. 1996 May 3;271(18):10753–10759. doi: 10.1074/jbc.271.18.10753. [DOI] [PubMed] [Google Scholar]
  22. Llopis J., Chow S. B., Kass G. E., Gahm A., Orrenius S. Comparison between the effects of the microsomal Ca(2+)-translocase inhibitors thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone on cellular calcium fluxes. Biochem J. 1991 Jul 15;277(Pt 2):553–556. doi: 10.1042/bj2770553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mauger J. P., Poggioli J., Claret M. Synergistic stimulation of the Ca2+ influx in rat hepatocytes by glucagon and the Ca2+-linked hormones vasopressin and angiotensin II. J Biol Chem. 1985 Sep 25;260(21):11635–11642. [PubMed] [Google Scholar]
  24. McCormack J. G., Denton R. M. The role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in mammalian tissues. Biochem Soc Trans. 1993 Aug;21(3):793–799. doi: 10.1042/bst0210793. [DOI] [PubMed] [Google Scholar]
  25. Moore G. A., McConkey D. J., Kass G. E., O'Brien P. J., Orrenius S. 2,5-Di(tert-butyl)-1,4-benzohydroquinone--a novel inhibitor of liver microsomal Ca2+ sequestration. FEBS Lett. 1987 Nov 30;224(2):331–336. doi: 10.1016/0014-5793(87)80479-9. [DOI] [PubMed] [Google Scholar]
  26. Morgan N. G., Blackmore P. F., Exton J. H. Modulation of the alpha 1-adrenergic control of hepatocyte calcium redistribution by increases in cyclic AMP. J Biol Chem. 1983 Apr 25;258(8):5110–5116. [PubMed] [Google Scholar]
  27. Poggioli J., Mauger J. P., Claret M. Effect of cyclic AMP-dependent hormones and Ca2+-mobilizing hormones on the Ca2+ influx and polyphosphoinositide metabolism in isolated rat hepatocytes. Biochem J. 1986 May 1;235(3):663–669. doi: 10.1042/bj2350663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pozzan T., Rizzuto R., Volpe P., Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994 Jul;74(3):595–636. doi: 10.1152/physrev.1994.74.3.595. [DOI] [PubMed] [Google Scholar]
  29. Reinhart P. H., Taylor W. M., Bygrave F. L. A procedure for the rapid preparation of mitochondria from rat liver. Biochem J. 1982 Jun 15;204(3):731–735. doi: 10.1042/bj2040731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reinhart P. H., Taylor W. M., Bygrave F. L. Calcium ion fluxes induced by the action of alpha-adrenergic agonists in perfused rat liver. Biochem J. 1982 Dec 15;208(3):619–630. doi: 10.1042/bj2080619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rizzuto R., Simpson A. W., Brini M., Pozzan T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature. 1992 Jul 23;358(6384):325–327. doi: 10.1038/358325a0. [DOI] [PubMed] [Google Scholar]
  32. Wakelam M. J., Murphy G. J., Hruby V. J., Houslay M. D. Activation of two signal-transduction systems in hepatocytes by glucagon. Nature. 1986 Sep 4;323(6083):68–71. doi: 10.1038/323068a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES