Abstract
Pseudomonas fluorescens subsp. cellulosa expressed arabinanase activity when grown on media supplemented with arabinan or arabinose. Arabinanase activity was not induced by the inclusion of other plant structural polysaccharides, and was repressed by the addition of glucose. The majority of the Pseudomonas arabinanase activity was extracellular. Screening of a genomic library of P. fluorescens subsp. cellulosa DNA constructed in Lambda ZAPII, for recombinants that hydrolysed Red-dyed arabinan, identified five arabinan-degrading plaques. Each of the phage contained the same Pseudomonas arabinanase gene, designated arbA, which was present as a single copy in the Pseudomonas genome. The nucleotide sequence of arbA revealed an open reading frame of 1041 bp encoding a protein, designated arabinanase A (ArbA), of Mr 39438. The N-terminal sequence of ArbA exhibited features typical of a prokaryotic signal peptide. Analysis of the primary structure of ArbA indicated that, unlike most Pseudomonas plant cell wall hydrolases, it did not contain linker sequences or have a modular structure, but consisted of a single catalytic domain. Sequence comparison between the Pseudomonas arabinanase and proteins in the SWISS-PROT database showed that ArbA exhibits greatest sequence identity with arabinanase A from Aspergillus niger, placing the enzyme in glycosyl hydrolase Family 43. The significance of the differing substrate specificities of enzymes in Family 43 is discussed. ArbA purifed from a recombinant strain of Escherichia coli had an Mr of 34000 and an N-terminal sequence identical to residues 32-51 of the deduced sequence of ArbA, and hydrolysed linear arabinan, carboxymethylarabinan and arabino-oligosaccharides. The enzyme displayed no activity against other plant structural polysaccharides, including branched sugar beet arabinan. ArbA produced almost exclusively arabinotriose from linear arabinan and appeared to hydrolyse arabino-oligosaccharides by successively releasing arabinotriose. ArbA and the Aspergillus arabinanase mediated a decrease in the viscosity of linear arabinan that was associated with a significant release of reducing sugar. We propose that ArbA is an arabinanase that exhibits both an endo- and an exo- mode of action.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolam D. N., Hughes N., Virden R., Lakey J. H., Hazlewood G. P., Henrissat B., Braithwaite K. L., Gilbert H. J. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry. 1996 Dec 17;35(50):16195–16204. doi: 10.1021/bi961866d. [DOI] [PubMed] [Google Scholar]
- Braithwaite K. L., Black G. W., Hazlewood G. P., Ali B. R., Gilbert H. J. A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J. 1995 Feb 1;305(Pt 3):1005–1010. doi: 10.1042/bj3051005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene. 1988 Aug 15;68(1):139–149. doi: 10.1016/0378-1119(88)90606-3. [DOI] [PubMed] [Google Scholar]
- Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
- Ferreira L. M., Durrant A. J., Hall J., Hazlewood G. P., Gilbert H. J. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochem J. 1990 Jul 1;269(1):261–264. doi: 10.1042/bj2690261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira L. M., Durrant A. J., Hall J., Hazlewood G. P., Gilbert H. J. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochem J. 1990 Jul 1;269(1):261–264. doi: 10.1042/bj2690261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira L. M., Hazlewood G. P., Barker P. J., Gilbert H. J. The cellodextrinase from Pseudomonas fluorescens subsp. cellulosa consists of multiple functional domains. Biochem J. 1991 Nov 1;279(Pt 3):793–799. doi: 10.1042/bj2790793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira L. M., Wood T. M., Williamson G., Faulds C., Hazlewood G. P., Black G. W., Gilbert H. J. A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain. Biochem J. 1993 Sep 1;294(Pt 2):349–355. doi: 10.1042/bj2940349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flipphi M. J., Panneman H., van der Veen P., Visser J., de Graaff L. H. Molecular cloning, expression and structure of the endo-1,5-alpha-L-arabinase gene of Aspergillus niger. Appl Microbiol Biotechnol. 1993 Nov;40(2-3):318–326. doi: 10.1007/BF00170387. [DOI] [PubMed] [Google Scholar]
- Gasparic A., Martin J., Daniel A. S., Flint H. J. A xylan hydrolase gene cluster in Prevotella ruminicola B(1)4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and beta-(1,4)-xylosidase activities. Appl Environ Microbiol. 1995 Aug;61(8):2958–2964. doi: 10.1128/aem.61.8.2958-2964.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gebler J., Gilkes N. R., Claeyssens M., Wilson D. B., Béguin P., Wakarchuk W. W., Kilburn D. G., Miller R. C., Jr, Warren R. A., Withers S. G. Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. J Biol Chem. 1992 Jun 25;267(18):12559–12561. [PubMed] [Google Scholar]
- Gilbert H. J., Jenkins G., Sullivan D. A., Hall J. Evidence for multiple carboxymethylcellulase genes in Pseudomonas fluorescens subsp. cellulosa. Mol Gen Genet. 1987 Dec;210(3):551–556. doi: 10.1007/BF00327211. [DOI] [PubMed] [Google Scholar]
- Hall J., Black G. W., Ferreira L. M., Millward-Sadler S. J., Ali B. R., Hazlewood G. P., Gilbert H. J. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem J. 1995 Aug 1;309(Pt 3):749–756. doi: 10.1042/bj3090749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazlewood G. P., Laurie J. I., Ferreira L. M., Gilbert H. J. Pseudomonas fluorescens subsp. cellulosa: an alternative model for bacterial cellulase. J Appl Bacteriol. 1992 Mar;72(3):244–251. doi: 10.1111/j.1365-2672.1992.tb01830.x. [DOI] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaji A., Saheki T. Endo-arabinanase from Bacillus subtilis F-11. Biochim Biophys Acta. 1975 Dec 18;410(2):354–360. doi: 10.1016/0005-2744(75)90237-5. [DOI] [PubMed] [Google Scholar]
- Kasumi T., Tsumuraya Y., Brewer C. F., Kersters-Hilderson H., Claeyssens M., Hehre E. J. Catalytic versatility of Bacillus pumilus beta-xylosidase: glycosyl transfer and hydrolysis promoted with alpha- and beta-D-xylosyl fluoride. Biochemistry. 1987 Jun 2;26(11):3010–3016. doi: 10.1021/bi00385a009. [DOI] [PubMed] [Google Scholar]
- Kellett L. E., Poole D. M., Ferreira L. M., Durrant A. J., Hazlewood G. P., Gilbert H. J. Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochem J. 1990 Dec 1;272(2):369–376. doi: 10.1042/bj2720369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
- Perlman D., Halvorson H. O. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol. 1983 Jun 25;167(2):391–409. doi: 10.1016/s0022-2836(83)80341-6. [DOI] [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- Staden R. A new computer method for the storage and manipulation of DNA gel reading data. Nucleic Acids Res. 1980 Aug 25;8(16):3673–3694. doi: 10.1093/nar/8.16.3673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ståhlberg J., Johansson G., Pettersson G. Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta. 1993 May 7;1157(1):107–113. doi: 10.1016/0304-4165(93)90085-m. [DOI] [PubMed] [Google Scholar]
- Tanaka M., Abe A., Uchida T. Substrate specificity of alpha-L-arabinofuranosidase from plant scopolia japonica calluses and a suggestion with reference to the structure of beet araban. Biochim Biophys Acta. 1981 Apr 14;658(2):377–386. doi: 10.1016/0005-2744(81)90308-9. [DOI] [PubMed] [Google Scholar]
- Tomme P., Kwan E., Gilkes N. R., Kilburn D. G., Warren R. A. Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. J Bacteriol. 1996 Jul;178(14):4216–4223. doi: 10.1128/jb.178.14.4216-4223.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Utt E. A., Eddy C. K., Keshav K. F., Ingram L. O. Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with beta-D-xylosidase and alpha-L-arabinofuranosidase activities. Appl Environ Microbiol. 1991 Apr;57(4):1227–1234. doi: 10.1128/aem.57.4.1227-1234.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein L., Albersheim P. Structure of Plant Cell Walls: IX. Purification and Partial Characterization of a Wall-degrading Endo-Arabanase and an Arabinosidase from Bacillus subtilis. Plant Physiol. 1979 Mar;63(3):425–432. doi: 10.1104/pp.63.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]