Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 1;323(Pt 3):593–596. doi: 10.1042/bj3230593

Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean.

G Battistuzzi 1, M Dietrich 1, R Löcke 1, H Witzel 1
PMCID: PMC1218359  PMID: 9169589

Abstract

The di-iron core of mammalian purple acid phosphatases has been reproduced in the plant enzyme from kidney bean (Mr 111000) upon insertion of an Fe(II) ion in place of the native zinc(II) in the dinuclear Fe(III)Zn(II) core. The shortening of the electronic relaxation time of the metal centre allows detection of hyperfine-shifted 1H NMR resonances, although severe broadening due to Curie relaxation prevents independent signal assignment. Nevertheless, comparison of the spectral features of the structurally characterized plant enzyme with those of the mammalian species, which were previously extensively assigned, is consistent with a close similarity of the metal-binding sites, also suggested by previous sequence-alignment studies. Some differences appear to be mainly localized at the M(II) site. Spectral comparison was also carried out on the Fe(III)Co(II) derivatives.

Full Text

The Full Text of this article is available as a PDF (235.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck J. L., Keough D. T., De Jersey J., Zerner B. Enzymatically active zinc, copper and mercury derivatives of the one-iron form of pig allantoic fluid acid phosphatase. Biochim Biophys Acta. 1984 Dec 21;791(3):357–363. doi: 10.1016/0167-4838(84)90347-9. [DOI] [PubMed] [Google Scholar]
  2. Klabunde T., Stahl B., Suerbaum H., Hahner S., Karas M., Hillenkamp F., Krebs B., Witzel H. The amino acid sequence of the red kidney bean Fe(III)-Zn(II) purple acid phosphatase. Determination of the amino acid sequence by a combination of matrix-assisted laser desorption/ionization mass spectrometry and automated Edman sequencing. Eur J Biochem. 1994 Dec 1;226(2):369–375. doi: 10.1111/j.1432-1033.1994.tb20061.x. [DOI] [PubMed] [Google Scholar]
  3. Klabunde T., Sträter N., Fröhlich R., Witzel H., Krebs B. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. J Mol Biol. 1996 Jun 21;259(4):737–748. doi: 10.1006/jmbi.1996.0354. [DOI] [PubMed] [Google Scholar]
  4. Klabunde T., Sträter N., Krebs B., Witzel H. Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid phosphatases. FEBS Lett. 1995 Jun 19;367(1):56–60. doi: 10.1016/0014-5793(95)00536-i. [DOI] [PubMed] [Google Scholar]
  5. Lauffer R. B., Antanaitis B. C., Aisen P., Que L., Jr 1H NMR studies of porcine uteroferrin. Magnetic interactions and active site structure. J Biol Chem. 1983 Dec 10;258(23):14212–14218. [PubMed] [Google Scholar]
  6. Sträter N., Klabunde T., Tucker P., Witzel H., Krebs B. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. Science. 1995 Jun 9;268(5216):1489–1492. doi: 10.1126/science.7770774. [DOI] [PubMed] [Google Scholar]
  7. Suerbaum H., Körner M., Witzel H., Althaus E., Mosel B. D., Müller-Warmuth W. Zn-exchange and Mössbauer studies on the [Fe-Fe] derivatives of the purple acid Fe(III)-Zn(II)-phosphatase from kidney beans. Eur J Biochem. 1993 May 15;214(1):313–321. doi: 10.1111/j.1432-1033.1993.tb17926.x. [DOI] [PubMed] [Google Scholar]
  8. Wang Z., Ming L. J., Que L., Jr, Vincent J. B., Crowder M. W., Averill B. A. 1H NMR and NOE studies of the purple acid phosphatases from porcine uterus and bovine spleen. Biochemistry. 1992 Jun 16;31(23):5263–5268. doi: 10.1021/bi00138a004. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES