Abstract
We describe a new principle for assessment of the activity of proteolytic enzymes of all classes and show the application of this principle for the quantitative assay of bacterial collagenase and human matrix metalloproteinases (MMPs). Central to this new principle is the presence of a proenzyme that can be activated into an active enzyme by a single proteolytic event. The regular activation sequence in the proenzyme is replaced using protein engineering by an artificial sequence recognized by the proteinase to be determined. The latter can act as an activator for the newly engineered proenzyme. In the present paper a simple colorimetric assay for the determination for MMPs is described based on this principle. With the aid of protein engineering, a modified pro-urokinase has been prepared in which the activation sequence normally recognized by plasmin (Pro-Arg-Phe-Lys upward arrowIle-Ile-Gly-Gly) has been replaced by a sequence expected to be recognized and hydrolysed by many MMPs (Arg-Pro-Leu-Gly upward arrowIle-Ile-Gly-Gly). The active urokinase resulting from activation of the modified pro-urokinase by a MMP could be measured either directly, using a specific chromogenic peptide substrate for urokinase, or indirectly via urokinase-catalysed plasminogen activation. The response of the assay to equal molar quantities of active MMPs decreases in the order MMP-2>MMP-9>MMP-1>MMP-3>MMP-7. The detection limit for MMP-9 was below 15 pM, corresponding to 3. 75x10(-15) mol per assay. Using the assay, increased MMP activity was detected in synovial tissue extracts from rheumatoid arthritis patients compared with those from osteoarthritis patients, and in stomach tumour extracts as compared with normal stomach tissue extracts.
Full Text
The Full Text of this article is available as a PDF (379.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett A. J., Rawlings N. D. Types and families of endopeptidases. Biochem Soc Trans. 1991 Aug;19(3):707–715. doi: 10.1042/bst0190707. [DOI] [PubMed] [Google Scholar]
- Berman J., Green M., Sugg E., Anderegg R., Millington D. S., Norwood D. L., McGeehan J., Wiseman J. Rapid optimization of enzyme substrates using defined substrate mixtures. J Biol Chem. 1992 Jan 25;267(3):1434–1437. [PubMed] [Google Scholar]
- Bickett D. M., Green M. D., Berman J., Dezube M., Howe A. S., Brown P. J., Roth J. T., McGeehan G. M. A high throughput fluorogenic substrate for interstitial collagenase (MMP-1) and gelatinase (MMP-9). Anal Biochem. 1993 Jul;212(1):58–64. doi: 10.1006/abio.1993.1291. [DOI] [PubMed] [Google Scholar]
- Bickett D. M., Green M. D., Wagner C., Roth J. T., Berman J., McGeehan G. M. A high throughput fluorogenic substrate for stromelysin (MMP-3). Ann N Y Acad Sci. 1994 Sep 6;732:351–355. doi: 10.1111/j.1749-6632.1994.tb24750.x. [DOI] [PubMed] [Google Scholar]
- Binnema D. J., van Iersel J. J., Dooijewaard G. Quantitation of urokinase antigen in plasma and culture media by use of an ELISA. Thromb Res. 1986 Sep 1;43(5):569–577. doi: 10.1016/0049-3848(86)90077-0. [DOI] [PubMed] [Google Scholar]
- Bond M. D., Auld D. S., Lobb R. R. A convenient fluorescent assay for vertebrate collagenases. Anal Biochem. 1986 Jun;155(2):315–321. doi: 10.1016/0003-2697(86)90440-9. [DOI] [PubMed] [Google Scholar]
- Drapier J. C., Tenu J. P., Lemaire G., Petit J. F. Regulation of plasminogen activator secretion in mouse peritoneal macrophages. I. - Role of serum studied by a new spectrophotometric assay for plasminogen activators. Biochimie. 1979;61(4):463–471. doi: 10.1016/s0300-9084(79)80202-3. [DOI] [PubMed] [Google Scholar]
- Fields G. B., Van Wart H. E., Birkedal-Hansen H. Sequence specificity of human skin fibroblast collagenase. Evidence for the role of collagen structure in determining the collagenase cleavage site. J Biol Chem. 1987 May 5;262(13):6221–6226. [PubMed] [Google Scholar]
- Fosang A. J., Last K., Knäuper V., Neame P. J., Murphy G., Hardingham T. E., Tschesche H., Hamilton J. A. Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain. Biochem J. 1993 Oct 1;295(Pt 1):273–276. doi: 10.1042/bj2950273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
- Granelli-Piperno A., Reich E. A study of proteases and protease-inhibitor complexes in biological fluids. J Exp Med. 1978 Jul 1;148(1):223–234. doi: 10.1084/jem.148.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray R. D., Saneii H. H. Characterization of vertebrate collagenase activity by high-performance liquid chromatography using a synthetic substrate. Anal Biochem. 1982 Mar 1;120(2):339–346. doi: 10.1016/0003-2697(82)90355-4. [DOI] [PubMed] [Google Scholar]
- Hanemaaijer R., Koolwijk P., le Clercq L., de Vree W. J., van Hinsbergh V. W. Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor alpha, interleukin 1 and phorbol ester. Biochem J. 1993 Dec 15;296(Pt 3):803–809. doi: 10.1042/bj2960803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison R., Teahan J., Stein R. A semicontinuous, high-performance liquid chromatography-based assay for stromelysin. Anal Biochem. 1989 Jul;180(1):110–113. doi: 10.1016/0003-2697(89)90096-1. [DOI] [PubMed] [Google Scholar]
- Jones D. H., Howard B. H. A rapid method for site-specific mutagenesis and directional subcloning by using the polymerase chain reaction to generate recombinant circles. Biotechniques. 1990 Feb;8(2):178–183. [PubMed] [Google Scholar]
- Knight C. G., Willenbrock F., Murphy G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 1992 Jan 27;296(3):263–266. doi: 10.1016/0014-5793(92)80300-6. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mahmoud M., Gaffney P. J. Bioimmunoassay (BIA) of tissue plasminogen activator (t-PA) and its specific inhibitor (t-PA/INH). Thromb Haemost. 1985 Jun 24;53(3):356–359. [PubMed] [Google Scholar]
- Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
- Netzel-Arnett S., Mallya S. K., Nagase H., Birkedal-Hansen H., Van Wart H. E. Continuously recording fluorescent assays optimized for five human matrix metalloproteinases. Anal Biochem. 1991 May 15;195(1):86–92. doi: 10.1016/0003-2697(91)90299-9. [DOI] [PubMed] [Google Scholar]
- Niedzwiecki L., Teahan J., Harrison R. K., Stein R. L. Substrate specificity of the human matrix metalloproteinase stromelysin and the development of continuous fluorometric assays. Biochemistry. 1992 Dec 22;31(50):12618–12623. doi: 10.1021/bi00165a011. [DOI] [PubMed] [Google Scholar]
- Okada Y., Morodomi T., Enghild J. J., Suzuki K., Yasui A., Nakanishi I., Salvesen G., Nagase H. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem. 1990 Dec 27;194(3):721–730. doi: 10.1111/j.1432-1033.1990.tb19462.x. [DOI] [PubMed] [Google Scholar]
- Quax P. H., van Leeuwen R. T., Verspaget H. W., Verheijen J. H. Protein and messenger RNA levels of plasminogen activators and inhibitors analyzed in 22 human tumor cell lines. Cancer Res. 1990 Mar 1;50(5):1488–1494. [PubMed] [Google Scholar]
- Rånby M., Norrman B., Wallén P. A sensitive assay for tissue plasminogen activator. Thromb Res. 1982 Sep 15;27(6):743–749. doi: 10.1016/0049-3848(82)90012-3. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seltzer J. L., Akers K. T., Weingarten H., Grant G. A., McCourt D. W., Eisen A. Z. Cleavage specificity of human skin type IV collagenase (gelatinase). Identification of cleavage sites in type I gelatin, with confirmation using synthetic peptides. J Biol Chem. 1990 Nov 25;265(33):20409–20413. [PubMed] [Google Scholar]
- Stack M. S., Gray R. D. Comparison of vertebrate collagenase and gelatinase using a new fluorogenic substrate peptide. J Biol Chem. 1989 Mar 15;264(8):4277–4281. [PubMed] [Google Scholar]
- Teahan J., Harrison R., Izquierdo M., Stein R. L. Substrate specificity of human fibroblast stromelysin. Hydrolysis of substance P and its analogues. Biochemistry. 1989 Oct 17;28(21):8497–8501. doi: 10.1021/bi00447a034. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tschesche H., Knäuper V., Krämer S., Michaelis J., Oberhoff R., Reinke H. Latent collagenase and gelatinase from human neutrophils and their activation. Matrix Suppl. 1992;1:245–255. [PubMed] [Google Scholar]
- Van Wart H. E., Steinbrink D. R. A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal Biochem. 1981 May 15;113(2):356–365. doi: 10.1016/0003-2697(81)90089-0. [DOI] [PubMed] [Google Scholar]
- Verde P., Stoppelli M. P., Galeffi P., Di Nocera P., Blasi F. Identification and primary sequence of an unspliced human urokinase poly(A)+ RNA. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4727–4731. doi: 10.1073/pnas.81.15.4727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verheijen J. H., Mullaart E., Chang G. T., Kluft C., Wijngaards G. A simple, sensitive spectrophotometric assay for extrinsic (tissue-type) plasminogen activator applicable to measurements in plasma. Thromb Haemost. 1982 Dec 27;48(3):266–269. [PubMed] [Google Scholar]
- Weening-Verhoeff E. J., Quax P. H., van Leeuwen R. T., Rehberg E. F., Marotti K. R., Verheijen J. H. Involvement of aspartic and glutamic residues in kringle-2 of tissue-type plasminogen activator in lysine binding, fibrin binding and stimulation of activity as revealed by chemical modification and oligonucleotide-directed mutagenesis. Protein Eng. 1990 Dec;4(2):191–198. doi: 10.1093/protein/4.2.191. [DOI] [PubMed] [Google Scholar]
- Willenbrock F., Crabbe T., Slocombe P. M., Sutton C. W., Docherty A. J., Cockett M. I., O'Shea M., Brocklehurst K., Phillips I. R., Murphy G. The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry. 1993 Apr 27;32(16):4330–4337. doi: 10.1021/bi00067a023. [DOI] [PubMed] [Google Scholar]
- Witty J. P., McDonnell S., Newell K. J., Cannon P., Navre M., Tressler R. J., Matrisian L. M. Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res. 1994 Sep 1;54(17):4805–4812. [PubMed] [Google Scholar]
- de Munk G. A., Caspers M. P., Chang G. T., Pouwels P. H., Enger-Valk B. E., Verheijen J. H. Binding of tissue-type plasminogen activator to lysine, lysine analogues, and fibrin fragments. Biochemistry. 1989 Sep 5;28(18):7318–7325. doi: 10.1021/bi00444a026. [DOI] [PubMed] [Google Scholar]