Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 1;323(Pt 3):629–636. doi: 10.1042/bj3230629

Modification of the N-terminus of human factor IX by defective propeptide cleavage or acetylation results in a destabilized calcium-induced conformation: effects on phospholipid binding and activation by factor XIa.

E G Wojcik 1, M Van Den Berg 1, S R Poort 1, R M Bertina 1
PMCID: PMC1218364  PMID: 9169594

Abstract

The propeptide of human coagulation factor IX (FIX) directs the gamma-carboxylation of the first 12 glutamic acid residues of the mature protein into gamma-carboxyglutamic acid (Gla) residues. The propeptide is normally removed before secretion of FIX into the blood. However, mutation of Arg-4 in the propeptide abolishes propeptide cleavage and results in circulating profactor IX in the blood. We studied three such genetic variants, factor IX Boxtel (Arg-4-->Trp), factor IX Bendorf (Arg-4-->Leu) and factor IX Seattle C (Arg-4-->Gln). These variant profactor IX molecules bind normally to anti-FIX:Mg(II) antibodies, which indicates that the mutations do not seriously affect gamma-carboxylation. Metal ion titration of the binding of variant profactor IX to conformation-specific antibodies demonstrates that the calcium-induced conformation is destabilized in the variant molecules. Also the binding of FIX Boxtel to phospholipids and its activation by factor XIa requires a high (>5 mM) calcium concentration. The three-dimensional structure of the Gla domain of FIX in the presence of calcium indicates that the acylation of the amino-terminus, rather than the presence of the propeptide, was responsible for the destabilization of the calcium-induced conformation. In order to confirm this, the alpha-amino group of Tyr1 of FIX was acetylated. This chemically modified FIX showed a similar destabilization of the calcium-induced conformation to variant profactor IX. Our data imply that the amino-terminus of FIX plays an important role in stabilizing the calcium-induced conformation of the Gla domain of FIX. This conformation is important for the binding to phospholipids as well as for the activation by factor XIa. Our results indicate that mutations in FIX that interfere with propeptide cleavage affect the function of the protein mainly by destabilizing the calcium-induced conformation.

Full Text

The Full Text of this article is available as a PDF (775.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley A. K., Rees D. J., Rizza C., Brownlee G. G. Defective propeptide processing of blood clotting factor IX caused by mutation of arginine to glutamine at position -4. Cell. 1986 May 9;45(3):343–348. doi: 10.1016/0092-8674(86)90319-3. [DOI] [PubMed] [Google Scholar]
  2. Bristol J. A., Freedman S. J., Furie B. C., Furie B. Profactor IX: the propeptide inhibits binding to membrane surfaces and activation by factor XIa. Biochemistry. 1994 Nov 29;33(47):14136–14143. doi: 10.1021/bi00251a024. [DOI] [PubMed] [Google Scholar]
  3. Diuguid D. L., Rabiet M. J., Furie B. C., Liebman H. A., Furie B. Molecular basis of hemophilia B: a defective enzyme due to an unprocessed propeptide is caused by a point mutation in the factor IX precursor. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5803–5807. doi: 10.1073/pnas.83.16.5803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freedman S. J., Furie B. C., Furie B., Baleja J. D. Structure of the calcium ion-bound gamma-carboxyglutamic acid-rich domain of factor IX. Biochemistry. 1995 Sep 26;34(38):12126–12137. doi: 10.1021/bi00038a005. [DOI] [PubMed] [Google Scholar]
  5. Furie B. C., Furie B. Biosynthesis of factor IX: implications for gene therapy. Thromb Haemost. 1995 Jul;74(1):274–277. [PubMed] [Google Scholar]
  6. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. doi: 10.1016/0092-8674(88)90567-3. [DOI] [PubMed] [Google Scholar]
  7. Galeffi P., Brownlee G. G. The propeptide region of clotting factor IX is a signal for a vitamin K dependent carboxylase: evidence from protein engineering of amino acid -4. Nucleic Acids Res. 1987 Nov 25;15(22):9505–9513. doi: 10.1093/nar/15.22.9505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gallati H., Pracht I. Peroxidase aus Meerrettich: Kinetische Studien und Optimierung der Peroxidase-Aktivitätsbestimmung mit den Substraten H202 und 3,3',5,5'-Tetramethylbenzidin. J Clin Chem Clin Biochem. 1985 Aug;23(8):453–460. [PubMed] [Google Scholar]
  9. Gaussem P., Gandrille S., Duchemin J., Emmerich J., Alhenc-Gelas M., Aillaud M. F., Aiach M. Influence of six mutations of the protein C gene on the Gla domain conformation and calcium affinity. Thromb Haemost. 1994 Jun;71(6):748–754. [PubMed] [Google Scholar]
  10. Habeeb A. F., Atassi M. Z. Enzymic and immunochemical properties of lysozyme. Evaluation of several amino group reversible blocking reagents. Biochemistry. 1970 Dec 8;9(25):4939–4944. doi: 10.1021/bi00827a016. [DOI] [PubMed] [Google Scholar]
  11. Handford P. A., Winship P. R., Brownlee G. G. Protein engineering of the propeptide of human factor IX. Protein Eng. 1991 Feb;4(3):319–323. doi: 10.1093/protein/4.3.319. [DOI] [PubMed] [Google Scholar]
  12. Haynes R., Osuga D. T., Feeney R. E. Modification of amino groups in inhibitors of proteolytic enzymes. Biochemistry. 1967 Feb;6(2):541–547. doi: 10.1021/bi00854a023. [DOI] [PubMed] [Google Scholar]
  13. Hubbard B. R., Jacobs M., Ulrich M. M., Walsh C., Furie B., Furie B. C. Vitamin K-dependent carboxylation. In vitro modification of synthetic peptides containing the gamma-carboxylation recognition site. J Biol Chem. 1989 Aug 25;264(24):14145–14150. [PubMed] [Google Scholar]
  14. Jackson C. M., Nemerson Y. Blood coagulation. Annu Rev Biochem. 1980;49:765–811. doi: 10.1146/annurev.bi.49.070180.004001. [DOI] [PubMed] [Google Scholar]
  15. Jacobs M., Freedman S. J., Furie B. C., Furie B. Membrane binding properties of the factor IX gamma-carboxyglutamic acid-rich domain prepared by chemical synthesis. J Biol Chem. 1994 Oct 14;269(41):25494–25501. [PubMed] [Google Scholar]
  16. Jorgensen M. J., Cantor A. B., Furie B. C., Brown C. L., Shoemaker C. B., Furie B. Recognition site directing vitamin K-dependent gamma-carboxylation resides on the propeptide of factor IX. Cell. 1987 Jan 30;48(2):185–191. doi: 10.1016/0092-8674(87)90422-3. [DOI] [PubMed] [Google Scholar]
  17. Knobloch O., Zoll B., Zerres K., Brackmann H. H., Olek K., Ludwig M. Recurrent mutations in the factor IX gene: founder effect or repeat de novo events. Investigation of the German haemophilia B population and review of de novo mutations. Hum Genet. 1993 Aug;92(1):40–48. doi: 10.1007/BF00216143. [DOI] [PubMed] [Google Scholar]
  18. Kotkow K. J., Roth D. A., Porter T. J., Furie B. C., Furie B. Role of propeptide in vitamin K-dependent gamma-carboxylation. Methods Enzymol. 1993;222:435–449. doi: 10.1016/0076-6879(93)22028-e. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Liddell M. B., Lillicrap D. P., Peake I. R., Bloom A. L. Defective propeptide processing and abnormal activation underlie the molecular pathology of factor IX Troed-y-Rhiw. Br J Haematol. 1989 Jun;72(2):208–215. doi: 10.1111/j.1365-2141.1989.tb07684.x. [DOI] [PubMed] [Google Scholar]
  21. Liebman H. A., Furie B. C., Furie B. The factor IX phospholipid-binding site is required for calcium-dependent activation of factor IX by factor XIa. J Biol Chem. 1987 Jun 5;262(16):7605–7612. [PubMed] [Google Scholar]
  22. Mann K. G., Jenny R. J., Krishnaswamy S. Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu Rev Biochem. 1988;57:915–956. doi: 10.1146/annurev.bi.57.070188.004411. [DOI] [PubMed] [Google Scholar]
  23. Miyata T., Zheng Y. Z., Sakata T., Kato H. Protein C Osaka 10 with aberrant propeptide processing: loss of anticoagulant activity due to an amino acid substitution in the protein C precursor. Thromb Haemost. 1995 Oct;74(4):1003–1008. [PubMed] [Google Scholar]
  24. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  25. Pabinger I., Schneider B. Thrombotic risk in hereditary antithrombin III, protein C, or protein S deficiency. A cooperative, retrospective study. Gesellschaft fur Thrombose- und Hamostaseforschung (GTH) Study Group on Natural Inhibitors. Arterioscler Thromb Vasc Biol. 1996 Jun;16(6):742–748. doi: 10.1161/01.atv.16.6.742. [DOI] [PubMed] [Google Scholar]
  26. Pan L. C., Price P. A. The propeptide of rat bone gamma-carboxyglutamic acid protein shares homology with other vitamin K-dependent protein precursors. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6109–6113. doi: 10.1073/pnas.82.18.6109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Poort S. R., Briët E., Bertina R. M., Reitsma P. H. Two mutations of the factor IX gene including a donor splice consensus deletion and a point mutation in a Dutch patient with severe hemophilia B. Thromb Haemost. 1990 Nov 30;64(3):379–384. [PubMed] [Google Scholar]
  28. Poort S. R., van der Linden I. K., Krommenhoek-van Es C., Briët E., Bertina R. M. Rabbit polyclonal antibodies against the calcium-dependent conformation of factor IX and their application in solid phase immunoradiometric assays. Thromb Haemost. 1986 Feb 28;55(1):122–128. [PubMed] [Google Scholar]
  29. Rabiet M. J., Jorgensen M. J., Furie B., Furie B. C. Effect of propeptide mutations on post-translational processing of factor IX. Evidence that beta-hydroxylation and gamma-carboxylation are independent events. J Biol Chem. 1987 Nov 5;262(31):14895–14898. [PubMed] [Google Scholar]
  30. Soriano-Garcia M., Park C. H., Tulinsky A., Ravichandran K. G., Skrzypczak-Jankun E. Structure of Ca2+ prothrombin fragment 1 including the conformation of the Gla domain. Biochemistry. 1989 Aug 22;28(17):6805–6810. doi: 10.1021/bi00443a004. [DOI] [PubMed] [Google Scholar]
  31. Sugimoto M., Miyata T., Kawabata S., Yoshioka A., Fukui H., Iwanaga S. Factor IX Kawachinagano: impaired function of the Gla-domain caused by attached propeptide region due to substitution of arginine by glutamine at position -4. Br J Haematol. 1989 Jun;72(2):216–221. doi: 10.1111/j.1365-2141.1989.tb07685.x. [DOI] [PubMed] [Google Scholar]
  32. Thompson A. R., Schoof J. M., Weinmann A. F., Chen S. H. Factor IX mutations: rapid, direct screening methods for 20 new families with hemophilia B. Thromb Res. 1992 Jan 15;65(2):289–295. doi: 10.1016/0049-3848(92)90249-a. [DOI] [PubMed] [Google Scholar]
  33. Wallin R., Stanton C., Hutson S. M. Intracellular maturation of the gamma-carboxyglutamic acid (Gla) region in prothrombin coincides with release of the propeptide. Biochem J. 1993 May 1;291(Pt 3):723–727. doi: 10.1042/bj2910723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ware J., Diuguid D. L., Liebman H. A., Rabiet M. J., Kasper C. K., Furie B. C., Furie B., Stafford D. W. Factor IX San Dimas. Substitution of glutamine for Arg-4 in the propeptide leads to incomplete gamma-carboxylation and altered phospholipid binding properties. J Biol Chem. 1989 Jul 5;264(19):11401–11406. [PubMed] [Google Scholar]
  35. Wasley L. C., Rehemtulla A., Bristol J. A., Kaufman R. J. PACE/furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J Biol Chem. 1993 Apr 25;268(12):8458–8465. [PubMed] [Google Scholar]
  36. Weber D. J., Berkowitz P., Panek M. G., Huh N. W., Pedersen L. G., Hiskey R. G. Modifications of bovine prothrombin fragment 1 in the presence and absence of Ca(II) ions. Loss of positive cooperativity in Ca(II) ion binding for the modified proteins. J Biol Chem. 1992 Mar 5;267(7):4564–4569. [PubMed] [Google Scholar]
  37. Welsch D. J., Nelsestuen G. L. Amino-terminal alanine functions in a calcium-specific process essential for membrane binding by prothrombin fragment 1. Biochemistry. 1988 Jun 28;27(13):4939–4945. doi: 10.1021/bi00413a052. [DOI] [PubMed] [Google Scholar]
  38. Welsch D. J., Pletcher C. H., Nelsestuen G. L. Chemical modification of prothrombin fragment 1: documentation of sequential, two-stage loss of protein function. Biochemistry. 1988 Jun 28;27(13):4933–4938. doi: 10.1021/bi00413a051. [DOI] [PubMed] [Google Scholar]
  39. Wojcik E. G., Simioni P., d Berg M., Girolami A., Bertina R. M. Mutations which introduce free cysteine residues in the Gla-domain of vitamin K dependent proteins result in the formation of complexes with alpha 1-microglobulin. Thromb Haemost. 1996 Jan;75(1):70–75. [PubMed] [Google Scholar]
  40. Wojcik E. G., van den Berg M., van der Linden I. K., Poort S. R., Cupers R., Bertina R. M. Factor IX Zutphen: a Cys18-->Arg mutation results in formation of a heterodimer with alpha 1-microglobulin and the inability to form a calcium-induced conformation. Biochem J. 1995 Nov 1;311(Pt 3):753–759. doi: 10.1042/bj3110753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wu S. M., Soute B. A., Vermeer C., Stafford D. W. In vitro gamma-carboxylation of a 59-residue recombinant peptide including the propeptide and the gamma-carboxyglutamic acid domain of coagulation factor IX. Effect of mutations near the propeptide cleavage site. J Biol Chem. 1990 Aug 5;265(22):13124–13129. [PubMed] [Google Scholar]
  42. Yoshitake S., Schach B. G., Foster D. C., Davie E. W., Kurachi K. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry. 1985 Jul 2;24(14):3736–3750. doi: 10.1021/bi00335a049. [DOI] [PubMed] [Google Scholar]
  43. van den Besselaar A. M., Ram I. E., Alderkamp G. H., Bertina R. M. The role of factor IX in tissue thromboplastin induced coagulation. Thromb Haemost. 1982 Aug 24;48(1):54–58. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES