Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 1;323(Pt 3):649–659. doi: 10.1042/bj3230649

Kinetics of low-density lipoprotein receptor activity in Hep-G2 cells: derivation and validation of a Briggs-Haldane-based kinetic model for evaluating receptor-mediated endocytotic processes in which receptors recycle.

H J Harwood Jr 1, L D Pellarin 1
PMCID: PMC1218367  PMID: 9169597

Abstract

The process of receptor-mediated endocytosis for receptors that recycle to the cell surface in an active form can be considered as being kinetically analogous to that of a uni-substrate, uni-product enzyme-catalysed reaction. In this study we have derived steady-state initial-velocity rate equations for this process, based on classical Briggs-Haldane and King-Altman kinetic approaches to multi-step reactions, and have evaluated this kinetic paradigm, using as a model system the low-density lipoprotein (LDL)-receptor-mediated endocytosis of the trapped label [14C]sucrose-LDL in uninduced, steady-state Hep-G2 cells. Using the derived rate equations, together with experimentally determined values for Bmax (123 fmol/mg of cell protein), Kd (14.3 nM), the endocytotic rate constant ke (analogous to kcat; 0.163 min-1), Km (80 nM) and maximal internalization velocity (26.4 fmol/min per mg), we have calculated the ratio ke/Km (0.00204 nM-1.min-1), the bimolecular rate constant for LDL and LDL-receptor association (0. 00248 nM-1.min-1), the first-order rate constant for LDL-LDL-receptor complex dissociation (0.0354 min-1), the total cellular content of LDL receptors (154 fmol/mg of cell protein), the intracellular LDL receptor concentration (30.7 fmol/mg of cell protein) and the pseudo-first-order rate constant for LDL receptor recycling (0.0653 min-1). Based on this mathematical model, the kinetic mechanism for the receptor-mediated endocytosis of [14C]sucrose-LDL by steady-state Hep-G2 cells is one of constitutive endocytosis via independent internalization sites that follows steady-state Briggs-Haldane kinetics, such that LDL-LDL-receptor interactions are characterized by a rapid-high-affinity ligand-receptor association, followed by ligand-receptor complex internalization that is rapid relative to complex dissociation, and by receptor recycling that is more rapid than complex internalization and that serves to maintain 80% of cellular LDL receptors on the cell surface in the steady-state. The consistency with which these quantitative observations parallel previous qualitative observations regarding LDL-receptor-mediated endocytosis, together with the high correlation between theoretical internalization velocities (calculated from determined rate constants) and experimental internalization velocities, underscore the validity of considering receptor-mediated endocytotic processes for recycling receptors in catalytic terms.

Full Text

The Full Text of this article is available as a PDF (522.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. A., Taylor S. S. Energetic limits of phosphotransfer in the catalytic subunit of cAMP-dependent protein kinase as measured by viscosity experiments. Biochemistry. 1992 Sep 15;31(36):8516–8522. doi: 10.1021/bi00151a019. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. G., Brown M. S., Goldstein J. L. Inefficient internalization of receptor-bound low density lipoprotein in human carcinoma A-431 cells. J Cell Biol. 1981 Feb;88(2):441–452. doi: 10.1083/jcb.88.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baron B. M., Siegel B. W. p-[125I]iodoclonidine, a novel radiolabeled agonist for studying central alpha 2-adrenergic receptors. Mol Pharmacol. 1990 Sep;38(3):348–356. [PubMed] [Google Scholar]
  4. Beebe J. A., Fierke C. A. A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry. 1994 Aug 30;33(34):10294–10304. doi: 10.1021/bi00200a009. [DOI] [PubMed] [Google Scholar]
  5. Bos C. R., Shank S. L., Snider M. D. Role of clathrin-coated vesicles in glycoprotein transport from the cell surface to the Golgi complex. J Biol Chem. 1995 Jan 13;270(2):665–671. doi: 10.1074/jbc.270.2.665. [DOI] [PubMed] [Google Scholar]
  6. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  7. Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232(4746):34–47. doi: 10.1126/science.3513311. [DOI] [PubMed] [Google Scholar]
  8. Casadó V., Mallol J., Lluis C., Canela E. I., Franco R. Effect of phospholipases and proteases on the [3H]N6-(R)-phenylisopropyladenosine ([3H]R-PIA) binding to A1 adenosine receptors from pig cerebral cortex. J Cell Biochem. 1991 Nov;47(3):278–288. doi: 10.1002/jcb.240470314. [DOI] [PubMed] [Google Scholar]
  9. Dashti N., Wolfbauer G., Koren E., Knowles B., Alaupovic P. Catabolism of human low density lipoproteins by human hepatoma cell line HepG2. Biochim Biophys Acta. 1984 Jul 26;794(3):373–384. doi: 10.1016/0005-2760(84)90003-1. [DOI] [PubMed] [Google Scholar]
  10. Feifel R., Rodrigues de Miranda J. F., Strohmann C., Tacke R., Aasen A. J., Mutschler E., Lambrecht G. Selective labelling of muscarinic M1 receptors in calf superior cervical ganglia by [3H](+/-)-telenzepine. Eur J Pharmacol. 1991 Mar 19;195(1):115–123. doi: 10.1016/0014-2999(91)90388-7. [DOI] [PubMed] [Google Scholar]
  11. Furfine E. S., Leban J. J., Landavazo A., Moomaw J. F., Casey P. J. Protein farnesyltransferase: kinetics of farnesyl pyrophosphate binding and product release. Biochemistry. 1995 May 23;34(20):6857–6862. doi: 10.1021/bi00020a032. [DOI] [PubMed] [Google Scholar]
  12. Garlind A., Cowburn R. F., Fowler C. J. Characterization of [3H]inositol 1,4,5-trisphosphate binding sites in human temporal cortical and cerebellar membranes. Neurochem Int. 1994 Jan;24(1):73–80. doi: 10.1016/0197-0186(94)90131-7. [DOI] [PubMed] [Google Scholar]
  13. Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  14. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  15. Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  16. Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
  17. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  18. Green S. A., Kelly R. B. Low density lipoprotein receptor and cation-independent mannose 6-phosphate receptor are transported from the cell surface to the Golgi apparatus at equal rates in PC12 cells. J Cell Biol. 1992 Apr;117(1):47–55. doi: 10.1083/jcb.117.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Havekes L., van Hinsbergh V., Kempen H. J., Emeis J. The metabolism in vitro of human low-density lipoprotein by the human hepatoma cell line Hep G2. Biochem J. 1983 Sep 15;214(3):951–958. doi: 10.1042/bj2140951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ikebe M., Hartshorne D. J. Reverse reaction of smooth muscle myosin light chain kinase. Formation of ATP from phosphorylated light chain plus ADP. J Biol Chem. 1986 Jun 25;261(18):8249–8253. [PubMed] [Google Scholar]
  21. Javitt N. B. Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB J. 1990 Feb 1;4(2):161–168. doi: 10.1096/fasebj.4.2.2153592. [DOI] [PubMed] [Google Scholar]
  22. Johnson C. L., Johnson C. G. Characterization of receptors for substance P in human astrocytoma cells: radioligand binding and inositol phosphate formation. J Neurochem. 1992 Feb;58(2):471–477. doi: 10.1111/j.1471-4159.1992.tb09745.x. [DOI] [PubMed] [Google Scholar]
  23. Kaplan J. Polypeptide-binding membrane receptors: analysis and classification. Science. 1981 Apr 3;212(4490):14–20. doi: 10.1126/science.6259730. [DOI] [PubMed] [Google Scholar]
  24. Knauer D. J., Wiley H. S., Cunningham D. D. Relationship between epidermal growth factor receptor occupancy and mitogenic response. Quantitative analysis using a steady state model system. J Biol Chem. 1984 May 10;259(9):5623–5631. [PubMed] [Google Scholar]
  25. Larkin J. M., Donzell W. C., Anderson R. G. Modulation of intracellular potassium and ATP: effects on coated pit function in fibroblasts and hepatocytes. J Cell Physiol. 1985 Sep;124(3):372–378. doi: 10.1002/jcp.1041240303. [DOI] [PubMed] [Google Scholar]
  26. Lund K. A., Opresko L. K., Starbuck C., Walsh B. J., Wiley H. S. Quantitative analysis of the endocytic system involved in hormone-induced receptor internalization. J Biol Chem. 1990 Sep 15;265(26):15713–15723. [PubMed] [Google Scholar]
  27. Maslak M., Martin C. T. Effects of solution conditions on the steady-state kinetics of initiation of transcription by T7 RNA polymerase. Biochemistry. 1994 Jun 7;33(22):6918–6924. doi: 10.1021/bi00188a022. [DOI] [PubMed] [Google Scholar]
  28. Opresko L. K., Wiley H. S. Receptor-mediated endocytosis in Xenopus oocytes. I. Characterization of the vitellogenin receptor system. J Biol Chem. 1987 Mar 25;262(9):4109–4115. [PubMed] [Google Scholar]
  29. Opresko L. K., Wiley H. S. Receptor-mediated endocytosis in Xenopus oocytes. II. Evidence for two novel mechanisms of hormonal regulation. J Biol Chem. 1987 Mar 25;262(9):4116–4123. [PubMed] [Google Scholar]
  30. Otlewski J., Zbyryt T. Single peptide bond hydrolysis/resynthesis in squash inhibitors of serine proteinases. 1. Kinetics and thermodynamics of the interaction between squash inhibitors and bovine beta-trypsin. Biochemistry. 1994 Jan 11;33(1):200–207. doi: 10.1021/bi00167a026. [DOI] [PubMed] [Google Scholar]
  31. Pastan I. H., Willingham M. C. Journey to the center of the cell: role of the receptosome. Science. 1981 Oct 30;214(4520):504–509. doi: 10.1126/science.6170111. [DOI] [PubMed] [Google Scholar]
  32. Pedreño J., de Castellarnau C., Cullaré C., Sánchez J., Gómez-Gerique J., Ordóez-Llanos J., González-Sastre F. LDL binding sites on platelets differ from the "classical" receptor of nucleated cells. Arterioscler Thromb. 1992 Nov;12(11):1353–1362. doi: 10.1161/01.atv.12.11.1353. [DOI] [PubMed] [Google Scholar]
  33. Pitas R. E., Innerarity T. L., Arnold K. S., Mahley R. W. Rate and equilibrium constants for binding of apo-E HDLc (a cholesterol-induced lipoprotein) and low density lipoproteins to human fibroblasts: evidence for multiple receptor binding of apo-E HDLc. Proc Natl Acad Sci U S A. 1979 May;76(5):2311–2315. doi: 10.1073/pnas.76.5.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pittman R. C., Carew T. E., Attie A. D., Witztum J. L., Watanabe Y., Steinberg D. Receptor-dependent and receptor-independent degradation of low density lipoprotein in normal rabbits and in receptor-deficient mutant rabbits. J Biol Chem. 1982 Jul 25;257(14):7994–8000. [PubMed] [Google Scholar]
  35. Pittman R. C., Green S. R., Attie A. D., Steinberg D. Radiolabeled sucrose covalently linked to protein. A device for quantifying degradation of plasma proteins catabolized by lysosomal mechanisms. J Biol Chem. 1979 Aug 10;254(15):6876–6879. [PubMed] [Google Scholar]
  36. Pittman R. C., Steinberg D. A new approach for assessing cumulative lysosomal degradation of proteins or other macromolecules. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1254–1259. doi: 10.1016/0006-291x(78)91271-8. [DOI] [PubMed] [Google Scholar]
  37. Pittman R. C., Taylor C. A., Jr Methods for assessment of tissue sites of lipoprotein degradation. Methods Enzymol. 1986;129:612–628. doi: 10.1016/0076-6879(86)29094-1. [DOI] [PubMed] [Google Scholar]
  38. Pompliano D. L., Rands E., Schaber M. D., Mosser S. D., Anthony N. J., Gibbs J. B. Steady-state kinetic mechanism of Ras farnesyl:protein transferase. Biochemistry. 1992 Apr 21;31(15):3800–3807. doi: 10.1021/bi00130a010. [DOI] [PubMed] [Google Scholar]
  39. Rajan V. P., Menon K. M. Involvement of microtubules in lipoprotein degradation and utilization for steroidogenesis in cultured rat luteal cells. Endocrinology. 1985 Dec;117(6):2408–2416. doi: 10.1210/endo-117-6-2408. [DOI] [PubMed] [Google Scholar]
  40. Servant G., Boulay G., Bossé R., Escher E., Guillemette G. Photoaffinity labeling of subtype 2 angiotensin receptor of human myometrium. Mol Pharmacol. 1993 May;43(5):677–683. [PubMed] [Google Scholar]
  41. Shacter E., Chock P. B., Stadtman E. R. Regulation through phosphorylation/dephosphorylation cascade systems. J Biol Chem. 1984 Oct 10;259(19):12252–12259. [PubMed] [Google Scholar]
  42. Simon D. I., Ezratty A. M., Loscalzo J. The fibrin(ogen)olytic properties of cathepsin D. Biochemistry. 1994 May 31;33(21):6555–6563. doi: 10.1021/bi00187a024. [DOI] [PubMed] [Google Scholar]
  43. Song L., Poulter C. D. Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3044–3048. doi: 10.1073/pnas.91.8.3044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Spurlock M. E., Cusumano J. C., Mills S. E. (-)-[3H]-dihydroalprenolol binding to beta-adrenergic receptors in porcine adipose tissue and skeletal muscle membrane preparations. J Anim Sci. 1993 Jul;71(7):1778–1785. doi: 10.2527/1993.7171778x. [DOI] [PubMed] [Google Scholar]
  45. Stack M. S., Pizzo S. V. The effect of substituted laminin A chain-derived peptides on the conformation and activation kinetics of plasminogen. Arch Biochem Biophys. 1994 Feb 15;309(1):117–122. doi: 10.1006/abbi.1994.1093. [DOI] [PubMed] [Google Scholar]
  46. Stivers J. T., Shuman S., Mildvan A. S. Vaccinia DNA topoisomerase I: single-turnover and steady-state kinetic analysis of the DNA strand cleavage and ligation reactions. Biochemistry. 1994 Jan 11;33(1):327–339. doi: 10.1021/bi00167a043. [DOI] [PubMed] [Google Scholar]
  47. Warwicker J., Mueller-Harvey I., Sumner I., Bhat K. M. The activity of porcine pancreatic phospholipase A2 in 20% alcohol/aqueous solvent, by experiment and electrostatics calculations. J Mol Biol. 1994 Feb 25;236(3):904–917. doi: 10.1006/jmbi.1994.1197. [DOI] [PubMed] [Google Scholar]
  48. Wiley H. S. Anomalous binding of epidermal growth factor to A431 cells is due to the effect of high receptor densities and a saturable endocytic system. J Cell Biol. 1988 Aug;107(2):801–810. doi: 10.1083/jcb.107.2.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wiley H. S., Cunningham D. D. A steady state model for analyzing the cellular binding, internalization and degradation of polypeptide ligands. Cell. 1981 Aug;25(2):433–440. doi: 10.1016/0092-8674(81)90061-1. [DOI] [PubMed] [Google Scholar]
  50. Wiley H. S., Cunningham D. D. The endocytotic rate constant. A cellular parameter for quantitating receptor-mediated endocytosis. J Biol Chem. 1982 Apr 25;257(8):4222–4229. [PubMed] [Google Scholar]
  51. Yokoyama K., McGeady P., Gelb M. H. Mammalian protein geranylgeranyltransferase-I: substrate specificity, kinetic mechanism, metal requirements, and affinity labeling. Biochemistry. 1995 Jan 31;34(4):1344–1354. doi: 10.1021/bi00004a029. [DOI] [PubMed] [Google Scholar]
  52. Zhang D., Jennings S. M., Robinson G. W., Poulter C. D. Yeast squalene synthase: expression, purification, and characterization of soluble recombinant enzyme. Arch Biochem Biophys. 1993 Jul;304(1):133–143. doi: 10.1006/abbi.1993.1331. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES