Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 1;323(Pt 3):693–699. doi: 10.1042/bj3230693

Diacylglycerol generated by exogenous phospholipase C activates the mitogen-activated protein kinase pathway independent of Ras- and phorbol ester-sensitive protein kinase C: dependence on protein kinase C-zeta.

M van Dijk 1, F J Muriana 1, P C van Der Hoeven 1, J de Widt 1, D Schaap 1, W H Moolenaar 1, W J van Blitterswijk 1
PMCID: PMC1218372  PMID: 9169602

Abstract

The role of diacylglycerol (DG) formation from phosphatidylcholine in mitogenic signal transduction is poorly understood. We have generated this lipid at the plasma membrane by treating Rat-1 fibroblasts with bacterial phosphatidylcholine-specific phospholipase C (PC-PLC). This treatment leads to activation of mitogen-activated protein kinase (MAPK). However, unlike platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), PC-PLC fails to activate Ras and to induce DNA synthesis, and activates MAPK only transiently (<45 min). Down-regulation of protein kinase C (PKC) -alpha, -delta and -epsilon isotypes has little or no effect on MAPK activation by either PC-PLC or growth factors. However, Ro 31-8220, a highly selective inhibitor of all PKC isotypes, including atypical PKC-zeta but not Raf-1, blocks MAPK activation by PDGF and PC-PLC, but not that by EGF, suggesting that atypical PKC mediates the PDGF and PC-PLC signal. In line with this, PKC-zeta is activated by PC-PLC and PDGF, but not by EGF, as shown by a kinase assay in vitro, using biotinylated epsilon-peptide as a substrate. Furthermore, dominant-negative PKC-zeta inhibits, while (wild-type) PKC-zeta overexpression enhances MAPK activation by PDGF and PC-PLC. The results suggest that DG generated by PC-PLC can activate the MAPK pathway independent of Ras and phorbol-ester-sensitive PKC but, instead, via PKC-zeta.

Full Text

The Full Text of this article is available as a PDF (407.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken A. 14-3-3 proteins on the MAP. Trends Biochem Sci. 1995 Mar;20(3):95–97. doi: 10.1016/s0968-0004(00)88971-9. [DOI] [PubMed] [Google Scholar]
  2. Berra E., Díaz-Meco M. T., Lozano J., Frutos S., Municio M. M., Sánchez P., Sanz L., Moscat J. Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO J. 1995 Dec 15;14(24):6157–6163. doi: 10.1002/j.1460-2075.1995.tb00306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bjørkøy G., Overvatn A., Diaz-Meco M. T., Moscat J., Johansen T. Evidence for a bifurcation of the mitogenic signaling pathway activated by Ras and phosphatidylcholine-hydrolyzing phospholipase C. J Biol Chem. 1995 Sep 8;270(36):21299–21306. doi: 10.1074/jbc.270.36.21299. [DOI] [PubMed] [Google Scholar]
  4. Burgering B. M., Medema R. H., Maassen J. A., van de Wetering M. L., van der Eb A. J., McCormick F., Bos J. L. Insulin stimulation of gene expression mediated by p21ras activation. EMBO J. 1991 May;10(5):1103–1109. doi: 10.1002/j.1460-2075.1991.tb08050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgering B. M., de Vries-Smits A. M., Medema R. H., van Weeren P. C., Tertoolen L. G., Bos J. L. Epidermal growth factor induces phosphorylation of extracellular signal-regulated kinase 2 via multiple pathways. Mol Cell Biol. 1993 Dec;13(12):7248–7256. doi: 10.1128/mcb.13.12.7248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cai H., Erhardt P., Troppmair J., Diaz-Meco M. T., Sithanandam G., Rapp U. R., Moscat J., Cooper G. M. Hydrolysis of phosphatidylcholine couples Ras to activation of Raf protein kinase during mitogenic signal transduction. Mol Cell Biol. 1993 Dec;13(12):7645–7651. doi: 10.1128/mcb.13.12.7645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carroll M. P., May W. S. Protein kinase C-mediated serine phosphorylation directly activates Raf-1 in murine hematopoietic cells. J Biol Chem. 1994 Jan 14;269(2):1249–1256. [PubMed] [Google Scholar]
  8. Crespo P., Mischak H., Gutkind J. S. Overexpression of mammalian protein kinase C-zeta does not affect the growth characteristics of NIH 3T3 cells. Biochem Biophys Res Commun. 1995 Aug 4;213(1):266–272. doi: 10.1006/bbrc.1995.2125. [DOI] [PubMed] [Google Scholar]
  9. Daum G., Eisenmann-Tappe I., Fries H. W., Troppmair J., Rapp U. R. The ins and outs of Raf kinases. Trends Biochem Sci. 1994 Nov;19(11):474–480. doi: 10.1016/0968-0004(94)90133-3. [DOI] [PubMed] [Google Scholar]
  10. Davis P. D., Hill C. H., Keech E., Lawton G., Nixon J. S., Sedgwick A. D., Wadsworth J., Westmacott D., Wilkinson S. E. Potent selective inhibitors of protein kinase C. FEBS Lett. 1989 Dec 18;259(1):61–63. doi: 10.1016/0014-5793(89)81494-2. [DOI] [PubMed] [Google Scholar]
  11. Dent P., Jelinek T., Morrison D. K., Weber M. J., Sturgill T. W. Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science. 1995 Jun 30;268(5219):1902–1906. doi: 10.1126/science.7604263. [DOI] [PubMed] [Google Scholar]
  12. Diaz-Meco M. T., Lozano J., Municio M. M., Berra E., Frutos S., Sanz L., Moscat J. Evidence for the in vitro and in vivo interaction of Ras with protein kinase C zeta. J Biol Chem. 1994 Dec 16;269(50):31706–31710. [PubMed] [Google Scholar]
  13. Exton J. H. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994 Apr 14;1212(1):26–42. doi: 10.1016/0005-2760(94)90186-4. [DOI] [PubMed] [Google Scholar]
  14. Gordge P. C., Ryves W. J. Inhibitors of protein kinase C. Cell Signal. 1994 Nov;6(8):871–882. doi: 10.1016/0898-6568(94)90020-5. [DOI] [PubMed] [Google Scholar]
  15. Ha K. S., Exton J. H. Differential translocation of protein kinase C isozymes by thrombin and platelet-derived growth factor. A possible function for phosphatidylcholine-derived diacylglycerol. J Biol Chem. 1993 May 15;268(14):10534–10539. [PubMed] [Google Scholar]
  16. Hordijk P. L., Verlaan I., van Corven E. J., Moolenaar W. H. Protein tyrosine phosphorylation induced by lysophosphatidic acid in Rat-1 fibroblasts. Evidence that phosphorylation of map kinase is mediated by the Gi-p21ras pathway. J Biol Chem. 1994 Jan 7;269(1):645–651. [PubMed] [Google Scholar]
  17. Kazanietz M. G., Areces L. B., Bahador A., Mischak H., Goodnight J., Mushinski J. F., Blumberg P. M. Characterization of ligand and substrate specificity for the calcium-dependent and calcium-independent protein kinase C isozymes. Mol Pharmacol. 1993 Aug;44(2):298–307. [PubMed] [Google Scholar]
  18. Kazanietz M. G., Bustelo X. R., Barbacid M., Kolch W., Mischak H., Wong G., Pettit G. R., Bruns J. D., Blumberg P. M. Zinc finger domains and phorbol ester pharmacophore. Analysis of binding to mutated form of protein kinase C zeta and the vav and c-raf proto-oncogene products. J Biol Chem. 1994 Apr 15;269(15):11590–11594. [PubMed] [Google Scholar]
  19. Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marmé D., Rapp U. R. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 1993 Jul 15;364(6434):249–252. doi: 10.1038/364249a0. [DOI] [PubMed] [Google Scholar]
  20. Larrodera P., Cornet M. E., Diaz-Meco M. T., Lopez-Barahona M., Diaz-Laviada I., Guddal P. H., Johansen T., Moscat J. Phospholipase C-mediated hydrolysis of phosphatidylcholine is an important step in PDGF-stimulated DNA synthesis. Cell. 1990 Jun 15;61(6):1113–1120. doi: 10.1016/0092-8674(90)90074-o. [DOI] [PubMed] [Google Scholar]
  21. Leevers S. J., Marshall C. J. MAP kinase regulation--the oncogene connection. Trends Cell Biol. 1992 Oct;2(10):283–286. doi: 10.1016/0962-8924(92)90105-v. [DOI] [PubMed] [Google Scholar]
  22. Limatola C., Schaap D., Moolenaar W. H., van Blitterswijk W. J. Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J. 1994 Dec 15;304(Pt 3):1001–1008. doi: 10.1042/bj3041001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lozano J., Berra E., Municio M. M., Diaz-Meco M. T., Dominguez I., Sanz L., Moscat J. Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem. 1994 Jul 29;269(30):19200–19202. [PubMed] [Google Scholar]
  24. Marais R., Light Y., Paterson H. F., Marshall C. J. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 1995 Jul 3;14(13):3136–3145. doi: 10.1002/j.1460-2075.1995.tb07316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
  26. McKenzie F. R., Seuwen K., Pouysségur J. Stimulation of phosphatidylcholine breakdown by thrombin and carbachol but not by tyrosine kinase receptor ligands in cells transfected with M1 muscarinic receptors. Rapid desensitization of phosphocholine-specific (PC) phospholipase D but sustained activity of PC-phospholipase C. J Biol Chem. 1992 Nov 15;267(32):22759–22769. [PubMed] [Google Scholar]
  27. Meloche S., Seuwen K., Pagès G., Pouysségur J. Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity. Mol Endocrinol. 1992 May;6(5):845–854. doi: 10.1210/mend.6.5.1603090. [DOI] [PubMed] [Google Scholar]
  28. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995 Apr 14;268(5208):247–251. doi: 10.1126/science.7716516. [DOI] [PubMed] [Google Scholar]
  29. Müller G., Ayoub M., Storz P., Rennecke J., Fabbro D., Pfizenmaier K. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 1995 May 1;14(9):1961–1969. doi: 10.1002/j.1460-2075.1995.tb07188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nakanishi H., Brewer K. A., Exton J. H. Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1993 Jan 5;268(1):13–16. [PubMed] [Google Scholar]
  31. Newton A. C. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995 Dec 1;270(48):28495–28498. doi: 10.1074/jbc.270.48.28495. [DOI] [PubMed] [Google Scholar]
  32. Pagès G., Lenormand P., L'Allemain G., Chambard J. C., Meloche S., Pouysségur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8319–8323. doi: 10.1073/pnas.90.18.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schaap D., van der Wal J., Howe L. R., Marshall C. J., van Blitterswijk W. J. A dominant-negative mutant of raf blocks mitogen-activated protein kinase activation by growth factors and oncogenic p21ras. J Biol Chem. 1993 Sep 25;268(27):20232–20236. [PubMed] [Google Scholar]
  34. Schütze S., Potthoff K., Machleidt T., Berkovic D., Wiegmann K., Krönke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced "acidic" sphingomyelin breakdown. Cell. 1992 Nov 27;71(5):765–776. doi: 10.1016/0092-8674(92)90553-o. [DOI] [PubMed] [Google Scholar]
  35. Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
  36. Slater S. J., Ho C., Kelly M. B., Larkin J. D., Taddeo F. J., Yeager M. D., Stubbs C. D. Protein kinase Calpha contains two activator binding sites that bind phorbol esters and diacylglycerols with opposite affinities. J Biol Chem. 1996 Mar 1;271(9):4627–4631. doi: 10.1074/jbc.271.9.4627. [DOI] [PubMed] [Google Scholar]
  37. Ui M., Okada T., Hazeki K., Hazeki O. Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem Sci. 1995 Aug;20(8):303–307. doi: 10.1016/s0968-0004(00)89056-8. [DOI] [PubMed] [Google Scholar]
  38. Ways D. K., Cook P. P., Webster C., Parker P. J. Effect of phorbol esters on protein kinase C-zeta. J Biol Chem. 1992 Mar 5;267(7):4799–4805. [PubMed] [Google Scholar]
  39. Xu X. X., Tessner T. G., Rock C. O., Jackowski S. Phosphatidylcholine hydrolysis and c-myc expression are in collaborating mitogenic pathways activated by colony-stimulating factor 1. Mol Cell Biol. 1993 Mar;13(3):1522–1533. doi: 10.1128/mcb.13.3.1522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yeo E. J., Exton J. H. Stimulation of phospholipase D by epidermal growth factor requires protein kinase C activation in Swiss 3T3 cells. J Biol Chem. 1995 Feb 24;270(8):3980–3988. doi: 10.1074/jbc.270.8.3980. [DOI] [PubMed] [Google Scholar]
  41. van Blitterswijk W. J., Hilkmann H. Rapid attenuation of receptor-induced diacylglycerol and phosphatidic acid by phospholipase D-mediated transphosphatidylation: formation of bisphosphatidic acid. EMBO J. 1993 Jul;12(7):2655–2662. doi: 10.1002/j.1460-2075.1993.tb05926.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van der Bend R. L., de Widt J., Hilkmann H., van Blitterswijk W. J. Diacylglycerol kinase in receptor-stimulated cells converts its substrate in a topologically restricted manner. J Biol Chem. 1994 Feb 11;269(6):4098–4102. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES