Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 1;323(Pt 3):727–734. doi: 10.1042/bj3230727

Synthetic, structural and biological studies of the ubiquitin system: synthesis and crystal structure of an analogue containing unnatural amino acids.

S G Love 1, T W Muir 1, R Ramage 1, K T Shaw 1, D Alexeev 1, L Sawyer 1, S M Kelly 1, N C Price 1, J E Arnold 1, M P Mee 1, R J Mayer 1
PMCID: PMC1218376  PMID: 9169606

Abstract

Ubiquitin is a 76-amino acid protein involved in the targeting for destruction of proteins in the cell. The protein can readily be synthesized chemically affording an extra dimension to studies of protein stability. Ubiquitin with various modifications to the hydrophobic core has been synthesized. In particular, two core amino acids have been replaced by aminobutyric acid (Val-26) and norvaline (for Ile-30) and the product crystallized. The refined crystal structure shows an overall contraction of the molecule and the side chain of Nva-30 rotates relative to Ile-30. However, the side chain rotation is not sufficient to compensate for the effect of the loss of the methyl group and hence a small cavity is introduced into the structure, which decreases the stability of the protein. The biological behaviour of the modified protein is unaltered. The observed changes in stability are of the magnitude expected for the removal of methyl groups from the hydrophobic core of a protein. Interestingly, the effect appears to be independent of the position of the removed methyl group. The intact structure, but not its stability, is important for recognition by the biological conjugating system.

Full Text

The Full Text of this article is available as a PDF (954.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexeev D., Bury S. M., Turner M. A., Ogunjobi O. M., Muir T. W., Ramage R., Sawyer L. Synthetic, structural and biological studies of the ubiquitin system: chemically synthesized and native ubiquitin fold into identical three-dimensional structures. Biochem J. 1994 Apr 1;299(Pt 1):159–163. doi: 10.1042/bj2990159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Briggs M. S., Roder H. Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2017–2021. doi: 10.1073/pnas.89.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
  4. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  5. Dawson P. E., Muir T. W., Clark-Lewis I., Kent S. B. Synthesis of proteins by native chemical ligation. Science. 1994 Nov 4;266(5186):776–779. doi: 10.1126/science.7973629. [DOI] [PubMed] [Google Scholar]
  6. Di Stefano D. L., Wand A. J. Two-dimensional 1H NMR study of human ubiquitin: a main chain directed assignment and structure analysis. Biochemistry. 1987 Nov 17;26(23):7272–7281. doi: 10.1021/bi00397a012. [DOI] [PubMed] [Google Scholar]
  7. Hershko A., Heller H., Elias S., Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem. 1983 Jul 10;258(13):8206–8214. [PubMed] [Google Scholar]
  8. Hurley J. H., Baase W. A., Matthews B. W. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J Mol Biol. 1992 Apr 20;224(4):1143–1159. doi: 10.1016/0022-2836(92)90475-y. [DOI] [PubMed] [Google Scholar]
  9. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  10. Khorasanizadeh S., Peters I. D., Butt T. R., Roder H. Folding and stability of a tryptophan-containing mutant of ubiquitin. Biochemistry. 1993 Jul 13;32(27):7054–7063. doi: 10.1021/bi00078a034. [DOI] [PubMed] [Google Scholar]
  11. Khorasanizadeh S., Peters I. D., Roder H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat Struct Biol. 1996 Feb;3(2):193–205. doi: 10.1038/nsb0296-193. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Liu C. F., Tam J. P. Peptide segment ligation strategy without use of protecting groups. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6584–6588. doi: 10.1073/pnas.91.14.6584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Milton R. C., Milton S. C., Kent S. B. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected]. Science. 1992 Jun 5;256(5062):1445–1448. doi: 10.1126/science.1604320. [DOI] [PubMed] [Google Scholar]
  15. Moore A. T., Williams K. E., Lloyd J. B. The effect of chemical treatments of albumin and orosomucoid on rate of clearance from the rat bloodstream and rate of pinocytic capture of rat yolk sac cultured in vitro. Biochem J. 1977 Jun 15;164(3):607–616. doi: 10.1042/bj1640607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muir T. W., Williams M. J., Ginsberg M. H., Kent S. B. Design and chemical synthesis of a neoprotein structural model for the cytoplasmic domain of a multisubunit cell-surface receptor: integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Biochemistry. 1994 Jun 21;33(24):7701–7708. doi: 10.1021/bi00190a025. [DOI] [PubMed] [Google Scholar]
  17. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  18. Padmanabhan S., Baldwin R. L. Straight-chain non-polar amino acids are good helix-formers in water. J Mol Biol. 1991 May 20;219(2):135–137. doi: 10.1016/0022-2836(91)90553-i. [DOI] [PubMed] [Google Scholar]
  19. Padmanabhan S., Marqusee S., Ridgeway T., Laue T. M., Baldwin R. L. Relative helix-forming tendencies of nonpolar amino acids. Nature. 1990 Mar 15;344(6263):268–270. doi: 10.1038/344268a0. [DOI] [PubMed] [Google Scholar]
  20. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  21. Ramage R., Green J., Muir T. W., Ogunjobi O. M., Love S., Shaw K. Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin. Biochem J. 1994 Apr 1;299(Pt 1):151–158. doi: 10.1042/bj2990151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shortle D., Stites W. E., Meeker A. K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry. 1990 Sep 4;29(35):8033–8041. doi: 10.1021/bi00487a007. [DOI] [PubMed] [Google Scholar]
  23. Steif C., Hinz H. J., Cesareni G. Effects of cavity-creating mutations on conformational stability and structure of the dimeric 4-alpha-helical protein ROP: thermal unfolding studies. Proteins. 1995 Sep;23(1):83–96. doi: 10.1002/prot.340230110. [DOI] [PubMed] [Google Scholar]
  24. Thornton J. M., Jones D. T., MacArthur M. W., Orengo C. M., Swindells M. B. Protein folds: towards understanding folding from inspection of native structures. Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):71–79. doi: 10.1098/rstb.1995.0047. [DOI] [PubMed] [Google Scholar]
  25. Vijay-Kumar S., Bugg C. E., Cook W. J. Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol. 1987 Apr 5;194(3):531–544. doi: 10.1016/0022-2836(87)90679-6. [DOI] [PubMed] [Google Scholar]
  26. Weber P. L., Brown S. C., Mueller L. Sequential 1H NMR assignments and secondary structure identification of human ubiquitin. Biochemistry. 1987 Nov 17;26(23):7282–7290. doi: 10.1021/bi00397a013. [DOI] [PubMed] [Google Scholar]
  27. Wlodawer A., Miller M., Jaskólski M., Sathyanarayana B. K., Baldwin E., Weber I. T., Selk L. M., Clawson L., Schneider J., Kent S. B. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science. 1989 Aug 11;245(4918):616–621. doi: 10.1126/science.2548279. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES