Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 1;323(Pt 3):777–783. doi: 10.1042/bj3230777

Characterization of the human multidrug resistance protein containing mutations in the ATP-binding cassette signature region.

E Bakos 1, I Klein 1, E Welker 1, K Szabó 1, M Müller 1, B Sarkadi 1, A Váradi 1
PMCID: PMC1218382  PMID: 9169612

Abstract

A number of mutants with single amino acid replacements were generated in the highly conserved ATP-binding cassette (ABC)-signature region (amino acids 531-543) of the N-terminal half of the human multidrug resistance (MDR1) protein. The cDNA variants were inserted into recombinant baculoviruses and the MDR1 proteins were expressed in Spodoptera frugiperda (Sf9) insect cells. The level of expression and membrane insertion of the MDR1 variants was examined by immunostaining, and MDR1 function was followed by measuring drug-stimulated ATPase activity. We found that two mutations, L531R and G534V, practically eliminated MDR1 expression; thus these amino acid replacements seem to inhibit the formation of a stable MDR1 protein structure. The MDR1 variants G534D and I541R were expressed at normal levels with normal membrane insertion, but showed a complete loss of drug-stimulated ATPase activity, while mutant R538M yielded full protein expression but with greatly decreased ATPase activity. Increasing the ATP concentration did not restore MDR1 ATPase activity in these variants. Some amino acid replacements in the ABC-signature region (K536I, K536R, I541T and R543S) affected neither the expression and membrane insertion nor the ATPase function of MDR1. We found no alteration in the drug-sensitivity of ATP cleavage in any of the MDR1 variants that had measurable ATPase activity. These observations suggest that the ABC-signature region is essential for MDR1 protein stability and function, but alterations in this region do not seem to modulate MDR1-drug interactions directly.

Full Text

The Full Text of this article is available as a PDF (825.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzaria M., Schurr E., Gros P. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Mol Cell Biol. 1989 Dec;9(12):5289–5297. doi: 10.1128/mcb.9.12.5289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berkower C., Michaelis S. Mutational analysis of the yeast a-factor transporter STE6, a member of the ATP binding cassette (ABC) protein superfamily. EMBO J. 1991 Dec;10(12):3777–3785. doi: 10.1002/j.1460-2075.1991.tb04947.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Browne B. L., McClendon V., Bedwell D. M. Mutations within the first LSGGQ motif of Ste6p cause defects in a-factor transport and mating in Saccharomyces cerevisiae. J Bacteriol. 1996 Mar;178(6):1712–1719. doi: 10.1128/jb.178.6.1712-1719.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cutting G. R., Kasch L. M., Rosenstein B. J., Zielenski J., Tsui L. C., Antonarakis S. E., Kazazian H. H., Jr A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature. 1990 Jul 26;346(6282):366–369. doi: 10.1038/346366a0. [DOI] [PubMed] [Google Scholar]
  5. Georges E., Tsuruo T., Ling V. Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. J Biol Chem. 1993 Jan 25;268(3):1792–1798. [PubMed] [Google Scholar]
  6. Germann U. A., Willingham M. C., Pastan I., Gottesman M. M. Expression of the human multidrug transporter in insect cells by a recombinant baculovirus. Biochemistry. 1990 Mar 6;29(9):2295–2303. doi: 10.1021/bi00461a013. [DOI] [PubMed] [Google Scholar]
  7. Gibbs T. W., Gill D. R., Salmond G. P. Localised mutagenesis of the fts YEX operon: conditionally lethal missense substitutions in the FtsE cell division protein of Escherichia coli are similar to those found in the cystic fibrosis transmembrane conductance regulator protein (CFTR) of human patients. Mol Gen Genet. 1992 Jul;234(1):121–128. doi: 10.1007/BF00272353. [DOI] [PubMed] [Google Scholar]
  8. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  9. Hamada H., Tsuruo T. Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7785–7789. doi: 10.1073/pnas.83.20.7785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoof T., Demmer A., Hadam M. R., Riordan J. R., Tümmler B. Cystic fibrosis-type mutational analysis in the ATP-binding cassette transporter signature of human P-glycoprotein MDR1. J Biol Chem. 1994 Aug 12;269(32):20575–20583. [PubMed] [Google Scholar]
  11. Hyde S. C., Emsley P., Hartshorn M. J., Mimmack M. M., Gileadi U., Pearce S. R., Gallagher M. P., Gill D. R., Hubbard R. E., Higgins C. F. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990 Jul 26;346(6282):362–365. doi: 10.1038/346362a0. [DOI] [PubMed] [Google Scholar]
  12. Kerem B. S., Zielenski J., Markiewicz D., Bozon D., Gazit E., Yahav J., Kennedy D., Riordan J. R., Collins F. S., Rommens J. M. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8447–8451. doi: 10.1073/pnas.87.21.8447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Logan J., Hiestand D., Daram P., Huang Z., Muccio D. D., Hartman J., Haley B., Cook W. J., Sorscher E. J. Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding. J Clin Invest. 1994 Jul;94(1):228–236. doi: 10.1172/JCI117311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Loo T. W., Clarke D. M. Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatography and characterization of their drug-stimulated ATPase activities. J Biol Chem. 1995 Sep 15;270(37):21449–21452. doi: 10.1074/jbc.270.37.21449. [DOI] [PubMed] [Google Scholar]
  16. Mimura C. S., Holbrook S. R., Ames G. F. Structural model of the nucleotide-binding conserved component of periplasmic permeases. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):84–88. doi: 10.1073/pnas.88.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Müller M., Bakos E., Welker E., Váradi A., Germann U. A., Gottesman M. M., Morse B. S., Roninson I. B., Sarkadi B. Altered drug-stimulated ATPase activity in mutants of the human multidrug resistance protein. J Biol Chem. 1996 Jan 26;271(4):1877–1883. doi: 10.1074/jbc.271.4.1877. [DOI] [PubMed] [Google Scholar]
  18. Pedersen P. L. Multidrug resistance--a fascinating, clinically relevant problem in bioenergetics. J Bioenerg Biomembr. 1995 Feb;27(1):3–5. doi: 10.1007/BF02110324. [DOI] [PubMed] [Google Scholar]
  19. Rao U. S. Mutation of glycine 185 to valine alters the ATPase function of the human P-glycoprotein expressed in Sf9 cells. J Biol Chem. 1995 Mar 24;270(12):6686–6690. [PubMed] [Google Scholar]
  20. Sangiuolo F., Novelli G., Murru S., Dallapiccola B. A serine-to-arginine (AGT-to-CGT) mutation in codon 549 of the CFTR gene in an Italian patient with severe cystic fibrosis. Genomics. 1991 Apr;9(4):788–789. doi: 10.1016/0888-7543(91)90380-w. [DOI] [PubMed] [Google Scholar]
  21. Sarkadi B., Price E. M., Boucher R. C., Germann U. A., Scarborough G. A. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem. 1992 Mar 5;267(7):4854–4858. [PubMed] [Google Scholar]
  22. Schinkel A. H., Arceci R. J., Smit J. J., Wagenaar E., Baas F., Dollé M., Tsuruo T., Mechetner E. B., Roninson I. B., Borst P. Binding properties of monoclonal antibodies recognizing external epitopes of the human MDR1 P-glycoprotein. Int J Cancer. 1993 Sep 30;55(3):478–484. doi: 10.1002/ijc.2910550326. [DOI] [PubMed] [Google Scholar]
  23. Shyamala V., Baichwal V., Beall E., Ames G. F. Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations. J Biol Chem. 1991 Oct 5;266(28):18714–18719. [PubMed] [Google Scholar]
  24. Tanaka S., Currier S. J., Bruggemann E. P., Ueda K., Germann U. A., Pastan I., Gottesman M. M. Use of recombinant P-glycoprotein fragments to produce antibodies to the multidrug transporter. Biochem Biophys Res Commun. 1990 Jan 15;166(1):180–186. doi: 10.1016/0006-291x(90)91928-l. [DOI] [PubMed] [Google Scholar]
  25. Tsui L. C. The spectrum of cystic fibrosis mutations. Trends Genet. 1992 Nov;8(11):392–398. doi: 10.1016/0168-9525(92)90301-j. [DOI] [PubMed] [Google Scholar]
  26. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Welker E., Szabó K., Holló Z., Müller M., Sarkadi B., Váradi A. Drug-stimulated ATPase activity of a deletion mutant of the human multidrug-resistance protein (MDR1). Biochem Biophys Res Commun. 1995 Nov 13;216(2):602–609. doi: 10.1006/bbrc.1995.2665. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES