Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 1;323(Pt 3):791–800. doi: 10.1042/bj3230791

Biochemical characterization of the mouse muscle-specific enolase: developmental changes in electrophoretic variants and selective binding to other proteins.

T Merkulova 1, M Lucas 1, C Jabet 1, N Lamandé 1, J D Rouzeau 1, F Gros 1, M Lazar 1, A Keller 1
PMCID: PMC1218384  PMID: 9169614

Abstract

The glycolytic enzyme enolase (EC 4.2.1.11) is active as dimers formed from three subunits encoded by different genes. The embryonic alphaalpha isoform remains distributed in many adult cell types, whereas a transition towards betabeta and gammagamma isoforms occurs in striated muscle cells and neurons respectively. It is not understood why enolase exhibits tissue-specific isoforms with very close functional properties. We approached this problem by the purification of native betabeta-enolase from mouse hindlimb muscles and by raising specific antibodies of high titre against this protein. These reagents have been useful in revealing a heterogeneity of the beta-enolase subunit that changes with in vivo and in vitro maturation. A basic carboxypeptidase appears to be involved in generating an acidic beta-enolase variant, and may regulate plasminogen binding by this subunit. We show for the first time that pure betabeta-enolase binds with high affinity the adjacent enzymes in the glycolytic pathway (pyruvate kinase and phosphoglycerate mutase), favouring the hypothesis that these three enzymes form a functional glycolytic segment. betabeta-Enolase binds with high affinity sarcomeric troponin but not actin and tropomyosin. Some of these binding properties are shared by the alphaalpha-isoenolase, which is also expressed in striated muscle, but not by the neuron-specific gammagamma-enolase. These results support the idea that specific interactions with macromolecules will address muscle enolase isoforms at the subcellular site where ATP, produced through glycolysis, is most needed for contraction. Such a specific targeting could be modulated by post-translational modifications.

Full Text

The Full Text of this article is available as a PDF (447.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asaga H., Konno K. Comparison between muscle and liver enolases and their behavior during differentiation and growth. J Biochem. 1975 Apr;77(4):867–877. doi: 10.1093/oxfordjournals.jbchem.a130795. [DOI] [PubMed] [Google Scholar]
  2. Bottalico L. A., Kendrick N. C., Keller A., Li Y., Tabas I. Cholesteryl ester loading of mouse peritoneal macrophages is associated with changes in the expression or modification of specific cellular proteins, including increase in an alpha-enolase isoform. Arterioscler Thromb. 1993 Feb;13(2):264–275. doi: 10.1161/01.atv.13.2.264. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cardenas J. M., Wold F. Comparative studies on structural and catalytic properties of enolases. Arch Biochem Biophys. 1971 Jun;144(2):663–672. doi: 10.1016/0003-9861(71)90373-0. [DOI] [PubMed] [Google Scholar]
  5. Chen-Zion M., Livnat T., Beitner R. Insulin rapidly stimulates binding of phosphofructokinase and aldolase to muscle cytoskeleton. Int J Biochem. 1992 May;24(5):821–826. doi: 10.1016/0020-711x(92)90019-w. [DOI] [PubMed] [Google Scholar]
  6. Cooper J. A., Esch F. S., Taylor S. S., Hunter T. Phosphorylation sites in enolase and lactate dehydrogenase utilized by tyrosine protein kinases in vivo and in vitro. J Biol Chem. 1984 Jun 25;259(12):7835–7841. [PubMed] [Google Scholar]
  7. Craig S. P., Day I. N., Thompson R. J., Craig I. W. Localisation of neurone-specific enolase (ENO2) to 12p13. Cytogenet Cell Genet. 1990;54(1-2):71–73. doi: 10.1159/000132960. [DOI] [PubMed] [Google Scholar]
  8. Dessen P., Fondrat C., Valencien C., Mugnier C. BISANCE: a French service for access to biomolecular sequence databases. Comput Appl Biosci. 1990 Oct;6(4):355–356. doi: 10.1093/bioinformatics/6.4.355. [DOI] [PubMed] [Google Scholar]
  9. Duquerroy S., Camus C., Janin J. X-ray structure and catalytic mechanism of lobster enolase. Biochemistry. 1995 Oct 3;34(39):12513–12523. [PubMed] [Google Scholar]
  10. Dölken G., Leisner E., Pette D. Immunofluorescent localization of glycogenolytic and glycolytic enzyme proteins and of malate dehydrogenase isozymes in cross-striated skeletal muscle and heart of the rabbit. Histochemistry. 1975;43(2):113–121. doi: 10.1007/BF00492440. [DOI] [PubMed] [Google Scholar]
  11. Feo S., Oliva D., Barbieri G., Xu W. M., Fried M., Giallongo A. The gene for the muscle-specific enolase is on the short arm of human chromosome 17. Genomics. 1990 Jan;6(1):192–194. doi: 10.1016/0888-7543(90)90467-9. [DOI] [PubMed] [Google Scholar]
  12. Fletcher L., Rider C. C., Taylor C. B., Adamson E. D., Luke B. M., Graham C. F. Enolase isoenzymes as markers of differentiation in teratocarcinoma cells and normal tissues of mouse. Dev Biol. 1978 Aug;65(2):462–475. doi: 10.1016/0012-1606(78)90041-6. [DOI] [PubMed] [Google Scholar]
  13. Hendriks D., Soons J., Scharpé S., Wevers R., van Sande M., Holmquist B. Identification of the carboxypeptidase responsible for the post-synthetic modification of creatine kinase in human serum. Clin Chim Acta. 1988 Mar 15;172(2-3):253–260. doi: 10.1016/0009-8981(88)90331-2. [DOI] [PubMed] [Google Scholar]
  14. Ibi T., Sahashi K., Kato K., Takahashi A., Sobue I. Immunohistochemical demonstration of beta-enolase in human skeletal muscle. Muscle Nerve. 1983 Nov-Dec;6(9):661–663. doi: 10.1002/mus.880060907. [DOI] [PubMed] [Google Scholar]
  15. Imamura K., Tanaka T. Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies. J Biochem. 1972 Jun;71(6):1043–1051. doi: 10.1093/oxfordjournals.jbchem.a129852. [DOI] [PubMed] [Google Scholar]
  16. Kato K., Shimizu A., Semba R., Satoh T. Tissue distribution, developmental profiles and effect of denervation of enolase isozymes in rat muscles. Biochim Biophys Acta. 1985 Jul 26;841(1):50–58. [PubMed] [Google Scholar]
  17. Keller A., Bérod A., Dussaillant M., Lamandé N., Gros F., Lucas M. Coexpression of alpha and gamma enolase genes in neurons of adult rat brain. J Neurosci Res. 1994 Aug 1;38(5):493–504. doi: 10.1002/jnr.490380503. [DOI] [PubMed] [Google Scholar]
  18. Keller A., Ott M. O., Lamandé N., Lucas M., Gros F., Buckingham M., Lazar M. Activation of the gene encoding the glycolytic enzyme beta-enolase during early myogenesis precedes an increased expression during fetal muscle development. Mech Dev. 1992 Jul;38(1):41–54. doi: 10.1016/0925-4773(92)90037-k. [DOI] [PubMed] [Google Scholar]
  19. Keller A., Rouzeau J. D., Farhadian F., Wisnewsky C., Marotte F., Lamandé N., Samuel J. L., Schwartz K., Lazar M., Lucas M. Differential expression of alpha- and beta-enolase genes during rat heart development and hypertrophy. Am J Physiol. 1995 Dec;269(6 Pt 2):H1843–H1851. doi: 10.1152/ajpheart.1995.269.6.H1843. [DOI] [PubMed] [Google Scholar]
  20. Keller A., Scarna H., Mermet A., Pujol J. F. Biochemical and immunological properties of the mouse brain enolases purified by a simple method. J Neurochem. 1981 Apr;36(4):1389–1397. doi: 10.1111/j.1471-4159.1981.tb00577.x. [DOI] [PubMed] [Google Scholar]
  21. Kim R. Y., Lietman T., Piatigorsky J., Wistow G. J. Structure and expression of the duck alpha-enolase/tau-crystallin-encoding gene. Gene. 1991 Jul 22;103(2):193–200. doi: 10.1016/0378-1119(91)90273-e. [DOI] [PubMed] [Google Scholar]
  22. Knull H. R., Walsh J. L. Association of glycolytic enzymes with the cytoskeleton. Curr Top Cell Regul. 1992;33:15–30. doi: 10.1016/b978-0-12-152833-1.50007-1. [DOI] [PubMed] [Google Scholar]
  23. Korge P., Campbell K. B. The importance of ATPase microenvironment in muscle fatigue: a hypothesis. Int J Sports Med. 1995 Apr;16(3):172–179. doi: 10.1055/s-2007-972987. [DOI] [PubMed] [Google Scholar]
  24. Lamandé N., Brosset S., Lucas M., Keller A., Rouzeau J. D., Johnson T. R., Gros F., Ilan J., Lazar M. Transcriptional up-regulation of the mouse gene for the muscle-specific subunit of enolase during terminal differentiation of myogenic cells. Mol Reprod Dev. 1995 Jul;41(3):306–313. doi: 10.1002/mrd.1080410305. [DOI] [PubMed] [Google Scholar]
  25. Lamandé N., Mazo A. M., Lucas M., Montarras D., Pinset C., Gros F., Legault-Demare L., Lazar M. Murine muscle-specific enolase: cDNA cloning, sequence, and developmental expression. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4445–4449. doi: 10.1073/pnas.86.12.4445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Larcher J. C., Boucher D., Ginzburg I., Gros F., Denoulet P. Heterogeneity of Tau proteins during mouse brain development and differentiation of cultured neurons. Dev Biol. 1992 Nov;154(1):195–204. doi: 10.1016/0012-1606(92)90059-p. [DOI] [PubMed] [Google Scholar]
  27. Lebherz H. G., Rutter W. J. Distribution of fructose diphosphate aldolase variants in biological systems. Biochemistry. 1969 Jan;8(1):109–121. doi: 10.1021/bi00829a016. [DOI] [PubMed] [Google Scholar]
  28. Lebioda L., Stec B. Mapping of isozymic differences in enolase. Int J Biol Macromol. 1991 Apr;13(2):97–100. doi: 10.1016/0141-8130(91)90055-y. [DOI] [PubMed] [Google Scholar]
  29. Masters C. Microenvironmental factors and the binding of glycolytic enzymes to contractile filaments. Int J Biochem. 1992 Mar;24(3):405–410. doi: 10.1016/0020-711x(92)90031-u. [DOI] [PubMed] [Google Scholar]
  30. Miles L. A., Dahlberg C. M., Plescia J., Felez J., Kato K., Plow E. F. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry. 1991 Feb 12;30(6):1682–1691. doi: 10.1021/bi00220a034. [DOI] [PubMed] [Google Scholar]
  31. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  32. Nakajima K., Hamanoue M., Takemoto N., Hattori T., Kato K., Kohsaka S. Plasminogen binds specifically to alpha-enolase on rat neuronal plasma membrane. J Neurochem. 1994 Dec;63(6):2048–2057. doi: 10.1046/j.1471-4159.1994.63062048.x. [DOI] [PubMed] [Google Scholar]
  33. Nazaryan K. B., Climent F., Simonian S., Tompa P., Batke J. Interaction of rabbit muscle enolase and 3-phosphoglycerate mutase studied by ELISA and by batch gel filtration. Arch Biochem Biophys. 1992 Aug 1;296(2):650–653. doi: 10.1016/0003-9861(92)90622-4. [DOI] [PubMed] [Google Scholar]
  34. Nettelblad F. A., Engström L. The kinetic effects of in vitro phosphorylation of rabbit muscle enolase by protein kinase C. A possible new kind of enzyme regulation. FEBS Lett. 1987 Apr 20;214(2):249–252. doi: 10.1016/0014-5793(87)80064-9. [DOI] [PubMed] [Google Scholar]
  35. Ohkubo K., Okuda M., Kaliner M. A. Immunological localization of neuropeptide-degrading enzymes in the nasal mucosa. Rhinology. 1994 Sep;32(3):130–133. [PubMed] [Google Scholar]
  36. Oliva D., Venturella S., Passantino R., Feo S., Giallongo A. Conserved alternative splicing in the 5'-untranslated region of the muscle-specific enolase gene. Primary structure of mRNAs, expression and influence of secondary structure on the translation efficiency. Eur J Biochem. 1995 Aug 15;232(1):141–149. doi: 10.1111/j.1432-1033.1995.tb20792.x. [DOI] [PubMed] [Google Scholar]
  37. Plummer T. H., Jr, Ryan T. J. A potent mercapto bi-product analogue inhibitor for human carboxypeptidase N. Biochem Biophys Res Commun. 1981 Jan 30;98(2):448–454. doi: 10.1016/0006-291x(81)90860-3. [DOI] [PubMed] [Google Scholar]
  38. Popovici T., Berwald-Netter Y., Vibert M., Kahn A., Skala H. Localization of aldolase C mRNA in brain cells. FEBS Lett. 1990 Jul 30;268(1):189–193. doi: 10.1016/0014-5793(90)81005-9. [DOI] [PubMed] [Google Scholar]
  39. Quax P. H., Frisdal E., Pedersen N., Bonavaud S., Thibert P., Martelly I., Verheijen J. H., Blasi F., Barlovatz-Meimon G. Modulation of activities and RNA level of the components of the plasminogen activation system during fusion of human myogenic satellite cells in vitro. Dev Biol. 1992 May;151(1):166–175. doi: 10.1016/0012-1606(92)90224-5. [DOI] [PubMed] [Google Scholar]
  40. Redlitz A., Fowler B. J., Plow E. F., Miles L. A. The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem. 1995 Jan 15;227(1-2):407–415. doi: 10.1111/j.1432-1033.1995.tb20403.x. [DOI] [PubMed] [Google Scholar]
  41. Redlitz A., Tan A. K., Eaton D. L., Plow E. F. Plasma carboxypeptidases as regulators of the plasminogen system. J Clin Invest. 1995 Nov;96(5):2534–2538. doi: 10.1172/JCI118315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rosenberg U. B., Eppenberger H. M., Perriard J. C. Occurrence of heterogenous forms of the subunits of creatine kinase in various muscle and nonmuscle tissues and their behaviour during myogenesis. Eur J Biochem. 1981 May;116(1):87–92. doi: 10.1111/j.1432-1033.1981.tb05304.x. [DOI] [PubMed] [Google Scholar]
  43. Shearwin K., Masters C. The binding of glycolytic enzymes to the cytoskeleton--influence of pH. Biochem Int. 1990 Nov;22(4):735–740. [PubMed] [Google Scholar]
  44. Shimizu A., Suzuki F., Kato K. Characterization of alpha alpha, beta beta, gamma gamma and alpha gamma human enolase isozymes, and preparation of hybrid enolases (alpha gamma, beta gamma and alpha beta) from homodimeric forms. Biochim Biophys Acta. 1983 Oct 28;748(2):278–284. doi: 10.1016/0167-4838(83)90305-9. [DOI] [PubMed] [Google Scholar]
  45. Skidgel R. A. Human carboxypeptidase N: lysine carboxypeptidase. Methods Enzymol. 1995;248:653–663. doi: 10.1016/0076-6879(95)48042-0. [DOI] [PubMed] [Google Scholar]
  46. Takei N., Kondo J., Nagaike K., Ohsawa K., Kato K., Kohsaka S. Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J Neurochem. 1991 Oct;57(4):1178–1184. doi: 10.1111/j.1471-4159.1991.tb08277.x. [DOI] [PubMed] [Google Scholar]
  47. Wegmann G., Zanolla E., Eppenberger H. M., Wallimann T. In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve. J Muscle Res Cell Motil. 1992 Aug;13(4):420–435. doi: 10.1007/BF01738037. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES