Abstract
Isolated rat hepatocytes bind and internalize bovine lactoferrin (Lf) and its bound iron in a Ca2+-dependent manner. In this study, we determined if one or both halves of Lf (N- and C-lobes) were responsible for the interaction of Lf with hepatocytes. We isolated three tryptic fragments of bovine Lf. Cleavage at Arg284-Ser285 generated two fragments: N-terminal pp36 that contained 80% of Lf N-lobe and C-terminal pp51. A second cleavage at Arg338-Ala339 generated a smaller fragment (pp44) that contained all of the C-lobe with no N-lobe elements. Hepatocytes bound Lf and pp51 in a Ca2+-dependent manner with the same affinity (Kd approx. 75 nM) and to nearly identical extents (approx. 10(6) sites per cell). Lf and pp51 competed with each other for binding to cells over a similar titration range. Hepatocytes internalized Lf at a faster rate than pp51 (kin=0.28 and 0.19 min-1 respectively), but cells degraded pp51 at approx. twice the rate of native Lf. pp44 competed with 125I-labelled Lf for binding to Ca2+-dependent binding sites on hepatocytes as well as native Lf or pp51. In contrast, hepatocytes bound pp36 (Kd=90 nM, <=5x10(6) sites per cell) but did not internalize or degrade it appreciably. Moreover, pp36 binding to cells was not Ca2+-dependent, and pp36 competed poorly with native Lf and pp51 for binding to cells. We conclude from these findings that the Lf determinants responsible for binding to the Ca2+-dependent receptor on hepatocytes is present within the C-lobe of Lf.
Full Text
The Full Text of this article is available as a PDF (470.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989 Oct 20;209(4):711–734. doi: 10.1016/0022-2836(89)90602-5. [DOI] [PubMed] [Google Scholar]
- Baker E. N., Baker H. M., Smith C. A., Stebbins M. R., Kahn M., Hellström K. E., Hellström I. Human melanotransferrin (p97) has only one functional iron-binding site. FEBS Lett. 1992 Feb 24;298(2-3):215–218. doi: 10.1016/0014-5793(92)80060-t. [DOI] [PubMed] [Google Scholar]
- Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K., Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta. 1992 May 22;1121(1-2):130–136. doi: 10.1016/0167-4838(92)90346-f. [DOI] [PubMed] [Google Scholar]
- Bennett R. M., Kokocinski T. Lactoferrin turnover in man. Clin Sci (Lond) 1979 Nov;57(5):453–460. doi: 10.1042/cs0570453. [DOI] [PubMed] [Google Scholar]
- Birgens H. S. The interaction of lactoferrin with human monocytes. Dan Med Bull. 1991 Jun;38(3):244–252. [PubMed] [Google Scholar]
- Britton J. R., Koldovský O. Luminal digestion of lactoferrin in suckling and weanling rats. Am J Physiol. 1987 Sep;253(3 Pt 1):G397–G403. doi: 10.1152/ajpgi.1987.253.3.G397. [DOI] [PubMed] [Google Scholar]
- Congiu Castellano A., Barteri M., Castagnola M., Bianconi A., Borghi E., Della Longa S. Structure-function relationship in the serotransferrin: the role of the pH on the conformational change and the metal ions release. Biochem Biophys Res Commun. 1994 Jan 28;198(2):646–652. doi: 10.1006/bbrc.1994.1094. [DOI] [PubMed] [Google Scholar]
- Davidson L. A., Lönnerdal B. Specific binding of lactoferrin to brush-border membrane: ontogeny and effect of glycan chain. Am J Physiol. 1988 Apr;254(4 Pt 1):G580–G585. doi: 10.1152/ajpgi.1988.254.4.G580. [DOI] [PubMed] [Google Scholar]
- Dewan J. C., Mikami B., Hirose M., Sacchettini J. C. Structural evidence for a pH-sensitive dilysine trigger in the hen ovotransferrin N-lobe: implications for transferrin iron release. Biochemistry. 1993 Nov 16;32(45):11963–11968. doi: 10.1021/bi00096a004. [DOI] [PubMed] [Google Scholar]
- Goodman R. E., Schanbacher F. L. Bovine lactoferrin mRNA: sequence, analysis, and expression in the mammary gland. Biochem Biophys Res Commun. 1991 Oct 15;180(1):75–84. doi: 10.1016/s0006-291x(05)81257-4. [DOI] [PubMed] [Google Scholar]
- Hashizume S., Kuroda K., Murakami H. Cell culture assay of biological activity of lactoferrin and transferrin. Methods Enzymol. 1987;147:302–314. doi: 10.1016/0076-6879(87)47120-6. [DOI] [PubMed] [Google Scholar]
- Hu W. L., Mazurier J., Sawatzki G., Montreuil J., Spik G. Lactotransferrin receptor of mouse small-intestinal brush border. Binding characteristics of membrane-bound and triton X-100-solubilized forms. Biochem J. 1988 Jan 15;249(2):435–441. doi: 10.1042/bj2490435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huettinger M., Retzek H., Hermann M., Goldenberg H. Lactoferrin specifically inhibits endocytosis of chylomicron remnants but not alpha-macroglobulin. J Biol Chem. 1992 Sep 15;267(26):18551–18557. [PubMed] [Google Scholar]
- Imber M. J., Pizzo S. V., Johnson W. J., Adams D. O. Selective diminution of the binding of mannose by murine macrophages in the late stages of activation. J Biol Chem. 1982 May 10;257(9):5129–5135. [PubMed] [Google Scholar]
- Ismail M., Brock J. H. Binding of lactoferrin and transferrin to the human promonocytic cell line U937. Effect on iron uptake and release. J Biol Chem. 1993 Oct 15;268(29):21618–21625. [PubMed] [Google Scholar]
- Kilár F., Simon I. The effect of iron binding on the conformation of transferrin. A small angle x-ray scattering study. Biophys J. 1985 Nov;48(5):799–802. doi: 10.1016/S0006-3495(85)83838-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legrand D., Mazurier J., Aubert J. P., Loucheux-Lefebvre M. H., Montreuil J., Spik G. Evidence for interactions between the 30 kDa N- and 50 kDa C-terminal tryptic fragments of human lactotransferrin. Biochem J. 1986 Jun 15;236(3):839–844. doi: 10.1042/bj2360839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legrand D., Mazurier J., Elass A., Rochard E., Vergoten G., Maes P., Montreuil J., Spik G. Molecular interactions between human lactotransferrin and the phytohemagglutinin-activated human lymphocyte lactotransferrin receptor lie in two loop-containing regions of the N-terminal domain I of human lactotransferrin. Biochemistry. 1992 Sep 29;31(38):9243–9251. doi: 10.1021/bi00153a018. [DOI] [PubMed] [Google Scholar]
- Legrand D., Mazurier J., Metz-Boutigue M. H., Jolles J., Jolles P., Montreuil J., Spik G. Characterization and localization of an iron-binding 18-kDa glycopeptide isolated from the N-terminal half of human lactotransferrin. Biochim Biophys Acta. 1984 May 31;787(1):90–96. doi: 10.1016/0167-4838(84)90111-0. [DOI] [PubMed] [Google Scholar]
- Mann D. M., Romm E., Migliorini M. Delineation of the glycosaminoglycan-binding site in the human inflammatory response protein lactoferrin. J Biol Chem. 1994 Sep 23;269(38):23661–23667. [PubMed] [Google Scholar]
- Mason A. B., Brown S. A., Church W. R. Monoclonal antibodies to either domain of ovotransferrin block binding to transferrin receptors on chick reticulocytes. J Biol Chem. 1987 Jul 5;262(19):9011–9015. [PubMed] [Google Scholar]
- Mazurier J., Legrand D., Hu W. L., Montreuil J., Spik G. Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. Isolation of the receptors by antiligand-affinity chromatography. Eur J Biochem. 1989 Feb 1;179(2):481–487. doi: 10.1111/j.1432-1033.1989.tb14578.x. [DOI] [PubMed] [Google Scholar]
- McAbee D. D., Esbensen K. Binding and endocytosis of apo- and holo-lactoferrin by isolated rat hepatocytes. J Biol Chem. 1991 Dec 15;266(35):23624–23631. [PubMed] [Google Scholar]
- McAbee D. D. Isolated rat hepatocytes acquire iron from lactoferrin by endocytosis. Biochem J. 1995 Oct 15;311(Pt 2):603–609. doi: 10.1042/bj3110603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAbee D. D., Nowatzke W., Oehler C., Sitaram M., Sbaschnig E., Opferman J. T., Carr J., Esbensen K. Endocytosis and degradation of bovine apo- and holo-lactoferrin by isolated rat hepatocytes are mediated by recycling calcium-dependent binding sites. Biochemistry. 1993 Dec 14;32(49):13749–13760. doi: 10.1021/bi00212a046. [DOI] [PubMed] [Google Scholar]
- Rochard E., Legrand D., Mazurier J., Montreuil J., Spik G. The N-terminal domain I of human lactotransferrin binds specifically to phytohemagglutinin-stimulated peripheral blood human lymphocyte receptors. FEBS Lett. 1989 Sep 11;255(1):201–204. doi: 10.1016/0014-5793(89)81091-9. [DOI] [PubMed] [Google Scholar]
- Schmidt A. M., Mora R., Cao R., Yan S. D., Brett J., Ramakrishnan R., Tsang T. C., Simionescu M., Stern D. The endothelial cell binding site for advanced glycation end products consists of a complex: an integral membrane protein and a lactoferrin-like polypeptide. J Biol Chem. 1994 Apr 1;269(13):9882–9888. [PubMed] [Google Scholar]
- Schmidt A. M., Vianna M., Gerlach M., Brett J., Ryan J., Kao J., Esposito C., Hegarty H., Hurley W., Clauss M. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem. 1992 Jul 25;267(21):14987–14997. [PubMed] [Google Scholar]
- Schryvers A. B., Morris L. J. Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect Immun. 1988 May;56(5):1144–1149. doi: 10.1128/iai.56.5.1144-1149.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spik G., Coddeville B., Mazurier J., Bourne Y., Cambillaut C., Montreuil J. Primary and three-dimensional structure of lactotransferrin (lactoferrin) glycans. Adv Exp Med Biol. 1994;357:21–32. doi: 10.1007/978-1-4615-2548-6_3. [DOI] [PubMed] [Google Scholar]
- Spik G., Coddeville B., Montreuil J. Comparative study of the primary structures of sero-, lacto- and ovotransferrin glycans from different species. Biochimie. 1988 Nov;70(11):1459–1469. doi: 10.1016/0300-9084(88)90283-0. [DOI] [PubMed] [Google Scholar]
- Thorstensen K., Trinder D., Zak O., Aisen P. Uptake of iron from N-terminal half-transferrin by isolated rat hepatocytes. Evidence of transferrin-receptor-independent iron uptake. Eur J Biochem. 1995 Aug 15;232(1):129–133. doi: 10.1111/j.1432-1033.1995.tb20790.x. [DOI] [PubMed] [Google Scholar]
- Wu H. F., Monroe D. M., Church F. C. Characterization of the glycosaminoglycan-binding region of lactoferrin. Arch Biochem Biophys. 1995 Feb 20;317(1):85–92. doi: 10.1006/abbi.1995.1139. [DOI] [PubMed] [Google Scholar]
- Yu R. H., Schryvers A. B. Regions located in both the N-lobe and C-lobe of human lactoferrin participate in the binding interaction with bacterial lactoferrin receptors. Microb Pathog. 1993 May;14(5):343–353. doi: 10.1006/mpat.1993.1034. [DOI] [PubMed] [Google Scholar]
- Zak O., Aisen P., Crawley J. B., Joannou C. L., Patel K. J., Rafiq M., Evans R. W. Iron release from recombinant N-lobe and mutants of human transferrin. Biochemistry. 1995 Nov 7;34(44):14428–14434. doi: 10.1021/bi00044a020. [DOI] [PubMed] [Google Scholar]
- Zak O., Trinder D., Aisen P. Primary receptor-recognition site of human transferrin is in the C-terminal lobe. J Biol Chem. 1994 Mar 11;269(10):7110–7114. [PubMed] [Google Scholar]
- Ziere G. J., Bijsterbosch M. K., van Berkel T. J. Removal of 14 N-terminal amino acids of lactoferrin enhances its affinity for parenchymal liver cells and potentiates the inhibition of beta- very low density lipoprotein binding. J Biol Chem. 1993 Dec 25;268(36):27069–27075. [PubMed] [Google Scholar]
- Ziere G. J., Kruijt J. K., Bijsterbosch M. K., van Berkel T. J. Recognition of lactoferrin and aminopeptidase M-modified lactoferrin by the liver: involvement of proteoglycans and the remnant receptor. Biochem J. 1996 Jan 1;313(Pt 1):289–295. doi: 10.1042/bj3130289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziere G. J., van Dijk M. C., Bijsterbosch M. K., van Berkel T. J. Lactoferrin uptake by the rat liver. Characterization of the recognition site and effect of selective modification of arginine residues. J Biol Chem. 1992 Jun 5;267(16):11229–11235. [PubMed] [Google Scholar]