Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):1–18. doi: 10.1042/bj3240001

Biochemistry and pathology of radical-mediated protein oxidation.

R T Dean 1, S Fu 1, R Stocker 1, M J Davies 1
PMCID: PMC1218394  PMID: 9164834

Abstract

Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several categories of reactive species, and a range of stable products whose chemistry is currently being elucidated. Among the reactive products, protein hydroperoxides can generate further radical fluxes on reaction with transition-metal ions; protein-bound reductants (notably dopa) can reduce transition-metal ions and thereby facilitate their reaction with hydroperoxides; and aldehydes may participate in Schiff-base formation and other reactions. Cells can detoxify some of the reactive species, e.g. by reducing protein hydroperoxides to unreactive hydroxides. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. Thus cells can generally remove oxidized proteins by proteolysis. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, this may contribute to the observed accumulation and damaging actions of oxidized proteins during aging and in pathologies such as diabetes, atherosclerosis and neurodegenerative diseases. Protein oxidation may also sometimes play controlling roles in cellular remodelling and cell growth. Proteins are also key targets in defensive cytolysis and in inflammatory self-damage. The possibility of selective protection against protein oxidation (antioxidation) is raised.

Full Text

The Full Text of this article is available as a PDF (432.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M. K., Chao T. S., Solway J., Rosner M. R., Hershenson M. B. Hydrogen peroxide stimulates mitogen-activated protein kinase in bovine tracheal myocytes: implications for human airway disease. Am J Respir Cell Mol Biol. 1994 Nov;11(5):577–585. doi: 10.1165/ajrcmb.11.5.7946386. [DOI] [PubMed] [Google Scholar]
  2. Adams G. E., Bisby R. H., Cundall R. B., Redpath J. L., Willson R. L. Selective free radical reactions with proteins and enzymes: the inactivation of ribonuclease. Radiat Res. 1972 Feb;49(2):290–299. [PubMed] [Google Scholar]
  3. Adams G. E., Posener M. L., Bisby R. H., Cundall R. B., Key J. R. Free radical reactions with proteins and enzymes: the inactivation of pepsin. Int J Radiat Biol Relat Stud Phys Chem Med. 1979 Jun;35(6):497–507. doi: 10.1080/09553007914550611. [DOI] [PubMed] [Google Scholar]
  4. Aeschbach R., Amadò R., Neukom H. Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochim Biophys Acta. 1976 Aug 9;439(2):292–301. doi: 10.1016/0005-2795(76)90064-7. [DOI] [PubMed] [Google Scholar]
  5. Aguirre J., Hansberg W. Oxidation of Neurospora crassa glutamine synthetase. J Bacteriol. 1986 Jun;166(3):1040–1045. doi: 10.1128/jb.166.3.1040-1045.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aguirre J., Rodríguez R., Hansberg W. Oxidation of Neurospora crassa NADP-specific glutamate dehydrogenase by activated oxygen species. J Bacteriol. 1989 Nov;171(11):6243–6250. doi: 10.1128/jb.171.11.6243-6250.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Albrich J. M., McCarthy C. A., Hurst J. K. Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci U S A. 1981 Jan;78(1):210–214. doi: 10.1073/pnas.78.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Aldrich J. E., Cundall R. B., Adams G. E., Willson R. L. Identification of essential residues in lysozyme: a pulse radiolysis method. Nature. 1969 Mar 15;221(5185):1049–1050. doi: 10.1038/2211049a0. [DOI] [PubMed] [Google Scholar]
  9. Amadò R., Aeschbach R., Neukom H. Dityrosine: in vitro production and characterization. Methods Enzymol. 1984;107:377–388. doi: 10.1016/0076-6879(84)07026-9. [DOI] [PubMed] [Google Scholar]
  10. Andersen H. J., Chen H., Pellett L. J., Tappel A. L. Ferrous-iron-induced oxidation in chicken liver slices as measured by hemichrome formation and thiobarbituric acid-reactive substances: effects of dietary vitamin E and beta-carotene. Free Radic Biol Med. 1993 Jul;15(1):37–48. doi: 10.1016/0891-5849(93)90123-c. [DOI] [PubMed] [Google Scholar]
  11. Andersen H. J., Pellett L., Tappel A. L. Hemichrome formation, lipid peroxidation, enzyme inactivation and protein degradation as indexes of oxidative damage in homogenates of chicken kidney and liver. Chem Biol Interact. 1994 Nov;93(2):155–169. doi: 10.1016/0009-2797(94)90094-9. [DOI] [PubMed] [Google Scholar]
  12. Anderson R. F., Patel K. B., Adams G. E. Critical residues in D-amino acid oxidase. A pulse-radiolysis and inactivation study. Int J Radiat Biol Relat Stud Phys Chem Med. 1977 Dec;32(6):523–531. doi: 10.1080/09553007714551311. [DOI] [PubMed] [Google Scholar]
  13. Ando M., Tappel A. L. Effect of dietary vitamin E on methyl ethyl ketone peroxide damage to microsomal cytochrome P-450 peroxidase. Chem Biol Interact. 1985 Nov;55(3):317–326. doi: 10.1016/s0009-2797(85)80138-1. [DOI] [PubMed] [Google Scholar]
  14. Armstrong R. C., Swallow A. J. Pulse- and gamma-radiolysis of aqueous solutions of tryptophan. Radiat Res. 1969 Dec;40(3):563–579. [PubMed] [Google Scholar]
  15. Aune T. M., Thomas E. L. Oxidation of protein sulfhydryls by products of peroxidase-catalyzed oxidation of thiocyanate ion. Biochemistry. 1978 Mar 21;17(6):1005–1010. doi: 10.1021/bi00599a010. [DOI] [PubMed] [Google Scholar]
  16. Aupeix K., Toti F., Satta N., Bischoff P., Freyssinet J. M. Oyxsterols induce membrane procoagulant activity in monocytic THP-1 cells. Biochem J. 1996 Mar 15;314(Pt 3):1027–1033. doi: 10.1042/bj3141027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ayala A., Cutler R. G. Comparison of 5-hydroxy-2-amino valeric acid with carbonyl group content as a marker of oxidized protein in human and mouse liver tissues. Free Radic Biol Med. 1996;21(4):551–558. doi: 10.1016/0891-5849(96)00125-6. [DOI] [PubMed] [Google Scholar]
  18. Ayala A., Cutler R. G. The utilization of 5-hydroxyl-2-amino valeric acid as a specific marker of oxidized arginine and proline residues in proteins. Free Radic Biol Med. 1996;21(1):65–80. doi: 10.1016/0891-5849(95)02220-1. [DOI] [PubMed] [Google Scholar]
  19. BARRON E. S. G., AMBROSE J., JOHNSON P. Studies on the mechanism of action of ionizing radiations. XIII. The effect of x-irradiation on some physico-chemical properties of amino acids and proteins. Radiat Res. 1955 Apr;2(2):145–158. [PubMed] [Google Scholar]
  20. Ballard F. J., Hopgood M. F. Inactivation of phosphoenolypyruvate carboxykinase (GTP) by liver extracts. Biochem J. 1976 Mar 15;154(3):717–724. doi: 10.1042/bj1540717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Banerjee S. K., Mudd J. B. Reaction of ozone with glycophorin in solution and in lipid vesicles. Arch Biochem Biophys. 1992 May 15;295(1):84–89. doi: 10.1016/0003-9861(92)90491-e. [DOI] [PubMed] [Google Scholar]
  22. Barchowsky A., Munro S. R., Morana S. J., Vincenti M. P., Treadwell M. Oxidant-sensitive and phosphorylation-dependent activation of NF-kappa B and AP-1 in endothelial cells. Am J Physiol. 1995 Dec;269(6 Pt 1):L829–L836. doi: 10.1152/ajplung.1995.269.6.L829. [DOI] [PubMed] [Google Scholar]
  23. Beckmann J. S., Ye Y. Z., Anderson P. G., Chen J., Accavitti M. A., Tarpey M. M., White C. R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994 Feb;375(2):81–88. doi: 10.1515/bchm3.1994.375.2.81. [DOI] [PubMed] [Google Scholar]
  24. Bedwell S., Dean R. T., Jessup W. The action of defined oxygen-centred free radicals on human low-density lipoprotein. Biochem J. 1989 Sep 15;262(3):707–712. doi: 10.1042/bj2620707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Benzi G., Moretti A. Are reactive oxygen species involved in Alzheimer's disease? Neurobiol Aging. 1995 Jul-Aug;16(4):661–674. doi: 10.1016/0197-4580(95)00066-n. [DOI] [PubMed] [Google Scholar]
  26. Berlett B. S., Levine R. L., Stadtman E. R. Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin. J Biol Chem. 1996 Feb 23;271(8):4177–4182. doi: 10.1074/jbc.271.8.4177. [DOI] [PubMed] [Google Scholar]
  27. Bernier M., Kusama Y., Borgers M., Ver Donck L., Valdes-Aguilera O., Neckers D. C., Hearse D. J. Pharmacological studies of arrhythmias induced by rose bengal photoactivation. Free Radic Biol Med. 1991;10(5):287–296. doi: 10.1016/0891-5849(91)90035-2. [DOI] [PubMed] [Google Scholar]
  28. Bisby R. H., Ahmed S., Cundall R. B. Repair of amino acid radicals by a vitamin E analogue. Biochem Biophys Res Commun. 1984 Feb 29;119(1):245–251. doi: 10.1016/0006-291x(84)91644-9. [DOI] [PubMed] [Google Scholar]
  29. Björkerud B., Björkerud S. Contrary effects of lightly and strongly oxidized LDL with potent promotion of growth versus apoptosis on arterial smooth muscle cells, macrophages, and fibroblasts. Arterioscler Thromb Vasc Biol. 1996 Mar;16(3):416–424. doi: 10.1161/01.atv.16.3.416. [DOI] [PubMed] [Google Scholar]
  30. Björnstedt M., Hamberg M., Kumar S., Xue J., Holmgren A. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem. 1995 May 19;270(20):11761–11764. doi: 10.1074/jbc.270.20.11761. [DOI] [PubMed] [Google Scholar]
  31. Bogaert Y. E., Rosenthal R. E., Fiskum G. Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Radic Biol Med. 1994 Jun;16(6):811–820. doi: 10.1016/0891-5849(94)90197-x. [DOI] [PubMed] [Google Scholar]
  32. Boudier C., Bieth J. G. Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor. Biochem J. 1994 Oct 1;303(Pt 1):61–68. doi: 10.1042/bj3030061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Bowry V. W., Mohr D., Cleary J., Stocker R. Prevention of tocopherol-mediated peroxidation in ubiquinol-10-free human low density lipoprotein. J Biol Chem. 1995 Mar 17;270(11):5756–5763. doi: 10.1074/jbc.270.11.5756. [DOI] [PubMed] [Google Scholar]
  34. Brot N., Weissbach L., Werth J., Weissbach H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2155–2158. doi: 10.1073/pnas.78.4.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Bruenner B. A., Jones A. D., German J. B. Direct characterization of protein adducts of the lipid peroxidation product 4-hydroxy-2-nonenal using electrospray mass spectrometry. Chem Res Toxicol. 1995 Jun;8(4):552–559. doi: 10.1021/tx00046a009. [DOI] [PubMed] [Google Scholar]
  36. Brunk U. T., Jones C. B., Sohal R. S. A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res. 1992 Sep;275(3-6):395–403. doi: 10.1016/0921-8734(92)90042-n. [DOI] [PubMed] [Google Scholar]
  37. Brush E. J., Lipsett K. A., Kozarich J. W. Inactivation of Escherichia coli pyruvate formate-lyase by hypophosphite: evidence for a rate-limiting phosphorus-hydrogen bond cleavage. Biochemistry. 1988 Mar 22;27(6):2217–2222. doi: 10.1021/bi00406a061. [DOI] [PubMed] [Google Scholar]
  38. Cao G., Cutler R. G. Protein oxidation and aging. I. Difficulties in measuring reactive protein carbonyls in tissues using 2,4-dinitrophenylhydrazine. Arch Biochem Biophys. 1995 Jun 20;320(1):106–114. doi: 10.1006/abbi.1995.1347. [DOI] [PubMed] [Google Scholar]
  39. Cappiello M., Voltarelli M., Giannessi M., Cecconi I., Camici G., Manao G., Del Corso A., Mura U. Glutathione dependent modification of bovine lens aldose reductase. Exp Eye Res. 1994 Apr;58(4):491–501. doi: 10.1006/exer.1994.1042. [DOI] [PubMed] [Google Scholar]
  40. Carney J. M., Floyd R. A. Protection against oxidative damage to CNS by alpha-phenyl-tert-butyl nitrone (PBN) and other spin-trapping agents: a novel series of nonlipid free radical scavengers. J Mol Neurosci. 1991;3(1):47–57. doi: 10.1007/BF02896848. [DOI] [PubMed] [Google Scholar]
  41. Carney J. M., Starke-Reed P. E., Oliver C. N., Landum R. W., Cheng M. S., Wu J. F., Floyd R. A. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3633–3636. doi: 10.1073/pnas.88.9.3633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Cervera J., Levine R. L. Modulation of the hydrophobicity of glutamine synthetase by mixed-function oxidation. FASEB J. 1988 Jul;2(10):2591–2595. doi: 10.1096/fasebj.2.10.2898411. [DOI] [PubMed] [Google Scholar]
  43. Chace K. V., Carubelli R., Nordquist R. E. The role of nonenzymatic glycosylation, transition metals, and free radicals in the formation of collagen aggregates. Arch Biochem Biophys. 1991 Aug 1;288(2):473–480. doi: 10.1016/0003-9861(91)90223-6. [DOI] [PubMed] [Google Scholar]
  44. Chae H. Z., Chung S. J., Rhee S. G. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994 Nov 4;269(44):27670–27678. [PubMed] [Google Scholar]
  45. Chen Q., Fischer A., Reagan J. D., Yan L. J., Ames B. N. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4337–4341. doi: 10.1073/pnas.92.10.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Chevalier M., Lin E. C., Levine R. L. Hydrogen peroxide mediates the oxidative inactivation of enzymes following the switch from anaerobic to aerobic metabolism in Klebsiella pneumoniae. J Biol Chem. 1990 Jan 5;265(1):42–46. [PubMed] [Google Scholar]
  47. Chevion M., Jiang Y., Har-El R., Berenshtein E., Uretzky G., Kitrossky N. Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1102–1106. doi: 10.1073/pnas.90.3.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Chio K. S., Tappel A. L. Inactivation of ribonuclease and other enzymes by peroxidizing lipids and by malonaldehyde. Biochemistry. 1969 Jul;8(7):2827–2832. doi: 10.1021/bi00835a020. [DOI] [PubMed] [Google Scholar]
  49. Christison J., Sies H., Stocker R. Human blood cells support the reduction of low-density-lipoprotein-associated cholesteryl ester hydroperoxides by albumin-bound ebselen. Biochem J. 1994 Dec 1;304(Pt 2):341–345. doi: 10.1042/bj3040341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Chung M. H., Kesner L., Chan P. C. Degradation of articular cartilage by copper and hydrogen peroxide. Agents Actions. 1984 Oct;15(3-4):328–335. doi: 10.1007/BF01972367. [DOI] [PubMed] [Google Scholar]
  51. Cini M., Moretti A. Studies on lipid peroxidation and protein oxidation in the aging brain. Neurobiol Aging. 1995 Jan-Feb;16(1):53–57. doi: 10.1016/0197-4580(95)80007-e. [DOI] [PubMed] [Google Scholar]
  52. Climent I., Levine R. L. Oxidation of the active site of glutamine synthetase: conversion of arginine-344 to gamma-glutamyl semialdehyde. Arch Biochem Biophys. 1991 Sep;289(2):371–375. doi: 10.1016/0003-9861(91)90425-i. [DOI] [PubMed] [Google Scholar]
  53. Coetzee W. A., Ichikawa H., Hearse D. J. Oxidant stress inhibits Na-Ca-exchange current in cardiac myocytes: mediation by sulfhydryl groups? Am J Physiol. 1994 Mar;266(3 Pt 2):H909–H919. doi: 10.1152/ajpheart.1994.266.3.H909. [DOI] [PubMed] [Google Scholar]
  54. Cohn J. A., Tsai L., Friguet B., Szweda L. I. Chemical characterization of a protein-4-hydroxy-2-nonenal cross-link: immunochemical detection in mitochondria exposed to oxidative stress. Arch Biochem Biophys. 1996 Apr 1;328(1):158–164. doi: 10.1006/abbi.1996.0156. [DOI] [PubMed] [Google Scholar]
  55. Copley S. D., Frank E., Kirsch W. M., Koch T. H. Detection and possible origins of aminomalonic acid in protein hydrolysates. Anal Biochem. 1992 Feb 14;201(1):152–157. doi: 10.1016/0003-2697(92)90188-d. [DOI] [PubMed] [Google Scholar]
  56. Costabel U., Maier K., Teschler H., Wang Y. M. Local immune components in chronic obstructive pulmonary disease. Respiration. 1992;59 (Suppl 1):17–19. doi: 10.1159/000196097. [DOI] [PubMed] [Google Scholar]
  57. Cucurou C., Battioni J. P., Thang D. C., Nam N. H., Mansuy D. Mechanisms of inactivation of lipoxygenases by phenidone and BW755C. Biochemistry. 1991 Sep 17;30(37):8964–8970. doi: 10.1021/bi00101a008. [DOI] [PubMed] [Google Scholar]
  58. Cuervo A. M., Knecht E., Terlecky S. R., Dice J. F. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am J Physiol. 1995 Nov;269(5 Pt 1):C1200–C1208. doi: 10.1152/ajpcell.1995.269.5.C1200. [DOI] [PubMed] [Google Scholar]
  59. Dabbagh A. J., Frei B. Human suction blister interstitial fluid prevents metal ion-dependent oxidation of low density lipoprotein by macrophages and in cell-free systems. J Clin Invest. 1995 Oct;96(4):1958–1966. doi: 10.1172/JCI118242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Dale W. M., Davies J. V., Gilbert C. W. The kinetics and specificities of deamination of nitrogenous compounds by X-radiation. Biochem J. 1949;45(1):93–99. doi: 10.1042/bj0450093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Davies K. J., Delsignore M. E., Lin S. W. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem. 1987 Jul 15;262(20):9902–9907. [PubMed] [Google Scholar]
  62. Davies K. J., Delsignore M. E. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J Biol Chem. 1987 Jul 15;262(20):9908–9913. [PubMed] [Google Scholar]
  63. Davies K. J., Lin S. W., Pacifici R. E. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J Biol Chem. 1987 Jul 15;262(20):9914–9920. [PubMed] [Google Scholar]
  64. Davies K. J. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987 Jul 15;262(20):9895–9901. [PubMed] [Google Scholar]
  65. Davies M. J., Fu S., Dean R. T. Protein hydroperoxides can give rise to reactive free radicals. Biochem J. 1995 Jan 15;305(Pt 2):643–649. doi: 10.1042/bj3050643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Davies M. J. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage. Arch Biochem Biophys. 1996 Dec 1;336(1):163–172. doi: 10.1006/abbi.1996.0545. [DOI] [PubMed] [Google Scholar]
  67. Dean R. T., Cheeseman K. H. Vitamin E protects proteins against free radical damage in lipid environments. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1277–1282. doi: 10.1016/s0006-291x(87)80271-1. [DOI] [PubMed] [Google Scholar]
  68. Dean R. T. Concerning a possible mechanism for selective capture of cytoplasmic proteins by lysosomes. Biochem Biophys Res Commun. 1975 Nov 17;67(2):604–609. doi: 10.1016/0006-291x(75)90855-4. [DOI] [PubMed] [Google Scholar]
  69. Dean R. T. Direct evidence of importance of lysosomes in degradation of intracellular proteins. Nature. 1975 Oct 2;257(5525):414–416. doi: 10.1038/257414a0. [DOI] [PubMed] [Google Scholar]
  70. Dean R. T., Gebicki J., Gieseg S., Grant A. J., Simpson J. A. Hypothesis: a damaging role in aging for reactive protein oxidation products? Mutat Res. 1992 Sep;275(3-6):387–393. doi: 10.1016/0921-8734(92)90041-m. [DOI] [PubMed] [Google Scholar]
  71. Dean R. T., Hunt J. V., Grant A. J., Yamamoto Y., Niki E. Free radical damage to proteins: the influence of the relative localization of radical generation, antioxidants, and target proteins. Free Radic Biol Med. 1991;11(2):161–168. doi: 10.1016/0891-5849(91)90167-2. [DOI] [PubMed] [Google Scholar]
  72. Dean R. T., Nick H. P., Schnebli H. P. Free radicals inactivate human neutrophil elastase and its inhibitors with comparable efficiency. Biochem Biophys Res Commun. 1989 Mar 15;159(2):821–827. doi: 10.1016/0006-291x(89)90068-5. [DOI] [PubMed] [Google Scholar]
  73. Dean R. T., Pollak J. K. Endogenous free radical generation may influence proteolysis in mitochondria. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1082–1089. doi: 10.1016/0006-291x(85)90296-7. [DOI] [PubMed] [Google Scholar]
  74. Dean R. T., Roberts C. R., Forni L. G. Oxygen-centred free radicals can efficiently degrade the polypeptide of proteoglycans in whole cartilage. Biosci Rep. 1984 Dec;4(12):1017–1026. doi: 10.1007/BF01116694. [DOI] [PubMed] [Google Scholar]
  75. Dean R. T., Roberts C. R., Jessup W. Fragmentation of extracellular and intracellular polypeptides by free radicals. Prog Clin Biol Res. 1985;180:341–350. [PubMed] [Google Scholar]
  76. Dean R. T., Thomas S. M., Garner A. Free-radical-mediated fragmentation of monoamine oxidase in the mitochondrial membrane. Roles for lipid radicals. Biochem J. 1986 Dec 1;240(2):489–494. doi: 10.1042/bj2400489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Dean R. T., Thomas S. M., Vince G., Wolff S. P. Oxidation induced proteolysis and its possible restriction by some secondary protein modifications. Biomed Biochim Acta. 1986;45(11-12):1563–1573. [PubMed] [Google Scholar]
  78. Dean R. T., Wolff S. P., McElligott M. A. Histidine and proline are important sites of free radical damage to proteins. Free Radic Res Commun. 1989;7(2):97–103. doi: 10.3109/10715768909087929. [DOI] [PubMed] [Google Scholar]
  79. Dreher D., Vargas J. R., Hochstrasser D. F., Junod A. F. Effects of oxidative stress and Ca2+ agonists on molecular chaperones in human umbilical vein endothelial cells. Electrophoresis. 1995 Jul;16(7):1205–1214. doi: 10.1002/elps.11501601201. [DOI] [PubMed] [Google Scholar]
  80. Dubey A., Forster M. J., Sohal R. S. Effect of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone on protein oxidation and life span. Arch Biochem Biophys. 1995 Dec 20;324(2):249–254. doi: 10.1006/abbi.1995.0037. [DOI] [PubMed] [Google Scholar]
  81. Dunn J. A., McCance D. R., Thorpe S. R., Lyons T. J., Baynes J. W. Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry. 1991 Feb 5;30(5):1205–1210. doi: 10.1021/bi00219a007. [DOI] [PubMed] [Google Scholar]
  82. Dykens J. A. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J Neurochem. 1994 Aug;63(2):584–591. doi: 10.1046/j.1471-4159.1994.63020584.x. [DOI] [PubMed] [Google Scholar]
  83. Dyrks T., Dyrks E., Masters C. L., Beyreuther K. Amyloidogenicity of rodent and human beta A4 sequences. FEBS Lett. 1993 Jun 14;324(2):231–236. doi: 10.1016/0014-5793(93)81399-k. [DOI] [PubMed] [Google Scholar]
  84. Eiserich J. P., Cross C. E., Jones A. D., Halliwell B., van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem. 1996 Aug 9;271(32):19199–19208. doi: 10.1074/jbc.271.32.19199. [DOI] [PubMed] [Google Scholar]
  85. Ericsson M., Tärnvik A., Kuoppa K., Sandström G., Sjöstedt A. Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide. Infect Immun. 1994 Jan;62(1):178–183. doi: 10.1128/iai.62.1.178-183.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Estell D. A., Graycar T. P., Wells J. A. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem. 1985 Jun 10;260(11):6518–6521. [PubMed] [Google Scholar]
  87. Fisher M. T., Stadtman E. R. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation. J Biol Chem. 1992 Jan 25;267(3):1872–1880. [PubMed] [Google Scholar]
  88. Floyd R. A., Carney J. M. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol. 1992;32 (Suppl):S22–S27. doi: 10.1002/ana.410320706. [DOI] [PubMed] [Google Scholar]
  89. Fong L. G., Parthasarathy S., Witztum J. L., Steinberg D. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J Lipid Res. 1987 Dec;28(12):1466–1477. [PubMed] [Google Scholar]
  90. Forsmark-Andrée P., Dallner G., Ernster L. Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles. Free Radic Biol Med. 1995 Dec;19(6):749–757. doi: 10.1016/0891-5849(95)00076-a. [DOI] [PubMed] [Google Scholar]
  91. Forster M. J., Dubey A., Dawson K. M., Stutts W. A., Lal H., Sohal R. S. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4765–4769. doi: 10.1073/pnas.93.10.4765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Francis G. L., Ballard F. J. Distribution and partial purification of a liver membrane protein capable of inactivating cytosol enzymes. Biochem J. 1980 Feb 15;186(2):571–579. doi: 10.1042/bj1860571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Fu S., Gebicki S., Jessup W., Gebicki J. M., Dean R. T. Biological fate of amino acid, peptide and protein hydroperoxides. Biochem J. 1995 Nov 1;311(Pt 3):821–827. doi: 10.1042/bj3110821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Fu S., Hick L. A., Sheil M. M., Dean R. T. Structural identification of valine hydroperoxides and hydroxides on radical-damaged amino acid, peptide, and protein molecules. Free Radic Biol Med. 1995 Sep;19(3):281–292. doi: 10.1016/0891-5849(95)00021-o. [DOI] [PubMed] [Google Scholar]
  95. Fucci L., Oliver C. N., Coon M. J., Stadtman E. R. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1521–1525. doi: 10.1073/pnas.80.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Fulks R. M., Stadtman E. R. Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes. Biochim Biophys Acta. 1985 Dec 13;843(3):214–229. doi: 10.1016/0304-4165(85)90142-4. [DOI] [PubMed] [Google Scholar]
  97. Gantchev T. G., van Lier J. E. Catalase inactivation following photosensitization with tetrasulfonated metallophthalocyanines. Photochem Photobiol. 1995 Jul;62(1):123–134. doi: 10.1111/j.1751-1097.1995.tb05248.x. [DOI] [PubMed] [Google Scholar]
  98. Garlick P. B., Davies M. J., Hearse D. J., Slater T. F. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res. 1987 Nov;61(5):757–760. doi: 10.1161/01.res.61.5.757. [DOI] [PubMed] [Google Scholar]
  99. Garner M. H., Spector A. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1274–1277. doi: 10.1073/pnas.77.3.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Gebicki S., Bartosz G., Gebicki J. M. The action of iron on amino acid and protein peroxides. Biochem Soc Trans. 1995 May;23(2):249S–249S. doi: 10.1042/bst023249s. [DOI] [PubMed] [Google Scholar]
  101. Gebicki S., Gebicki J. M. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J. 1993 Feb 1;289(Pt 3):743–749. doi: 10.1042/bj2890743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Gershon H., Gershon D. Detection of inactive enzyme molecules in ageing organisms. Nature. 1970 Sep 19;227(5264):1214–1217. doi: 10.1038/2271214a0. [DOI] [PubMed] [Google Scholar]
  103. Gieseg S. P., Simpson J. A., Charlton T. S., Duncan M. W., Dean R. T. Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry. 1993 May 11;32(18):4780–4786. doi: 10.1021/bi00069a012. [DOI] [PubMed] [Google Scholar]
  104. Giulivi C., Davies K. J. Dityrosine and tyrosine oxidation products are endogenous markers for the selective proteolysis of oxidatively modified red blood cell hemoglobin by (the 19 S) proteasome. J Biol Chem. 1993 Apr 25;268(12):8752–8759. [PubMed] [Google Scholar]
  105. Goldstone S. D., Fragonas J. C., Jeitner T. M., Hunt N. H. Transcription factors as targets for oxidative signalling during lymphocyte activation. Biochim Biophys Acta. 1995 Aug 22;1263(2):114–122. doi: 10.1016/0167-4781(95)00088-x. [DOI] [PubMed] [Google Scholar]
  106. Gopalakrishna R., Chen Z. H., Gundimeda U. Irreversible oxidative inactivation of protein kinase C by photosensitive inhibitor calphostin C. FEBS Lett. 1992 Dec 14;314(2):149–154. doi: 10.1016/0014-5793(92)80962-g. [DOI] [PubMed] [Google Scholar]
  107. Grant A. J., Jessup W., Dean R. T. Accelerated endocytosis and incomplete catabolism of radical-damaged protein. Biochim Biophys Acta. 1992 Apr 7;1134(3):203–209. doi: 10.1016/0167-4889(92)90177-d. [DOI] [PubMed] [Google Scholar]
  108. Grant A. J., Jessup W., Dean R. T. Inefficient degradation of oxidized regions of protein molecules. Free Radic Res Commun. 1993;18(5):259–267. doi: 10.3109/10715769309147493. [DOI] [PubMed] [Google Scholar]
  109. Gray H. B., Winkler J. R. Electron transfer in proteins. Annu Rev Biochem. 1996;65:537–561. doi: 10.1146/annurev.bi.65.070196.002541. [DOI] [PubMed] [Google Scholar]
  110. Grune T., Reinheckel T., Joshi M., Davies K. J. Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem. 1995 Feb 3;270(5):2344–2351. doi: 10.1074/jbc.270.5.2344. [DOI] [PubMed] [Google Scholar]
  111. Guptasarma P., Balasubramanian D., Matsugo S., Saito I. Hydroxyl radical mediated damage to proteins, with special reference to the crystallins. Biochemistry. 1992 May 5;31(17):4296–4303. doi: 10.1021/bi00132a021. [DOI] [PubMed] [Google Scholar]
  112. Hansberg W., Aguirre J. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol. 1990 Jan 23;142(2):201–221. doi: 10.1016/s0022-5193(05)80222-x. [DOI] [PubMed] [Google Scholar]
  113. Hansberg W., de Groot H., Sies H. Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic Biol Med. 1993 Mar;14(3):287–293. doi: 10.1016/0891-5849(93)90025-p. [DOI] [PubMed] [Google Scholar]
  114. Harris M. E., Hensley K., Butterfield D. A., Leedle R. A., Carney J. M. Direct evidence of oxidative injury produced by the Alzheimer's beta-amyloid peptide (1-40) in cultured hippocampal neurons. Exp Neurol. 1995 Feb;131(2):193–202. doi: 10.1016/0014-4886(95)90041-1. [DOI] [PubMed] [Google Scholar]
  115. Hartman P. S., Eisenstark A., Pauw P. G. Inactivation of phage T7 by near-ultraviolet radiation plus hydrogen peroxide: DNA-protein crosslinks prevent DNA injection. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3228–3232. doi: 10.1073/pnas.76.7.3228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Hazell L. J., Arnold L., Flowers D., Waeg G., Malle E., Stocker R. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest. 1996 Mar 15;97(6):1535–1544. doi: 10.1172/JCI118576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Hazell L. J., Stocker R. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem J. 1993 Feb 15;290(Pt 1):165–172. doi: 10.1042/bj2900165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Hazen S. L., Hsu F. F., Heinecke J. W. p-Hydroxyphenylacetaldehyde is the major product of L-tyrosine oxidation by activated human phagocytes. A chloride-dependent mechanism for the conversion of free amino acids into reactive aldehydes by myeloperoxidase. J Biol Chem. 1996 Jan 26;271(4):1861–1867. doi: 10.1074/jbc.271.4.1861. [DOI] [PubMed] [Google Scholar]
  119. Heinecke J. W., Li W., Daehnke H. L., 3rd, Goldstein J. A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem. 1993 Feb 25;268(6):4069–4077. [PubMed] [Google Scholar]
  120. Heinecke J. W., Li W., Francis G. A., Goldstein J. A. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest. 1993 Jun;91(6):2866–2872. doi: 10.1172/JCI116531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Hendil K. B. Intracellular degradation of hemoglobin transferred into fibroblasts by fusion with red blood cells. J Cell Physiol. 1980 Dec;105(3):449–460. doi: 10.1002/jcp.1041050309. [DOI] [PubMed] [Google Scholar]
  122. Hensley K., Carney J. M., Mattson M. P., Aksenova M., Harris M., Wu J. F., Floyd R. A., Butterfield D. A. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3270–3274. doi: 10.1073/pnas.91.8.3270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Hicks M., Delbridge L., Yue D. K., Reeve T. S. Catalysis of lipid peroxidation by glucose and glycosylated collagen. Biochem Biophys Res Commun. 1988 Mar 15;151(2):649–655. doi: 10.1016/s0006-291x(88)80330-9. [DOI] [PubMed] [Google Scholar]
  124. Ho Y. S., Wang Y. J., Lin J. K. Induction of p53 and p21/WAF1/CIP1 expression by nitric oxide and their association with apoptosis in human cancer cells. Mol Carcinog. 1996 May;16(1):20–31. doi: 10.1002/(SICI)1098-2744(199605)16:1<20::AID-MC4>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  125. Hoff H. F., O'Neil J., Chisolm G. M., 3rd, Cole T. B., Quehenberger O., Esterbauer H., Jürgens G. Modification of low density lipoprotein with 4-hydroxynonenal induces uptake by macrophages. Arteriosclerosis. 1989 Jul-Aug;9(4):538–549. doi: 10.1161/01.atv.9.4.538. [DOI] [PubMed] [Google Scholar]
  126. Hopkins F. G. Glutathione: Its Influence in the Oxidation of Fats and Proteins. Biochem J. 1925;19(5):787–819. doi: 10.1042/bj0190787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Huggins T. G., Wells-Knecht M. C., Detorie N. A., Baynes J. W., Thorpe S. R. Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. J Biol Chem. 1993 Jun 15;268(17):12341–12347. [PubMed] [Google Scholar]
  128. Hunt J. V., Dean R. T. Free radical-mediated degradation of proteins: the protective and deleterious effects of membranes. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1076–1084. doi: 10.1016/0006-291x(89)90783-3. [DOI] [PubMed] [Google Scholar]
  129. Hunt J. V., Dean R. T., Wolff S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J. 1988 Nov 15;256(1):205–212. doi: 10.1042/bj2560205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Hunt J. V., Simpson J. A., Dean R. T. Hydroperoxide-mediated fragmentation of proteins. Biochem J. 1988 Feb 15;250(1):87–93. doi: 10.1042/bj2500087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. JAYSON G. G., SCHOLES G., WEISS J. Formation of formylkynurenine by the action of x-rays on tryptophan in aqueous solution. Biochem J. 1954 Jul;57(3):386–390. doi: 10.1042/bj0570386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Jessup W., Jurgens G., Lang J., Esterbauer H., Dean R. T. Interaction of 4-hydroxynonenal-modified low-density lipoproteins with the fibroblast apolipoprotein B/E receptor. Biochem J. 1986 Feb 15;234(1):245–248. doi: 10.1042/bj2340245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Jessup W., Mander E. L., Dean R. T. The intracellular storage and turnover of apolipoprotein B of oxidized LDL in macrophages. Biochim Biophys Acta. 1992 Jun 22;1126(2):167–177. doi: 10.1016/0005-2760(92)90287-6. [DOI] [PubMed] [Google Scholar]
  134. Kautiainen A. Determination of hemoglobin adducts from aldehydes formed during lipid peroxidation in vitro. Chem Biol Interact. 1992 Jun 15;83(1):55–63. doi: 10.1016/0009-2797(92)90091-x. [DOI] [PubMed] [Google Scholar]
  135. Keck R. G. The use of t-butyl hydroperoxide as a probe for methionine oxidation in proteins. Anal Biochem. 1996 Apr 5;236(1):56–62. doi: 10.1006/abio.1996.0131. [DOI] [PubMed] [Google Scholar]
  136. Keren N., Gong H., Ohad I. Oscillations of reaction center II-D1 protein degradation in vivo induced by repetitive light flashes. Correlation between the level of RCII-QB- and protein degradation in low light. J Biol Chem. 1995 Jan 13;270(2):806–814. doi: 10.1074/jbc.270.2.806. [DOI] [PubMed] [Google Scholar]
  137. Kettle A. J. Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Lett. 1996 Jan 22;379(1):103–106. doi: 10.1016/0014-5793(95)01494-2. [DOI] [PubMed] [Google Scholar]
  138. Kim K., Kim I. H., Lee K. Y., Rhee S. G., Stadtman E. R. The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem. 1988 Apr 5;263(10):4704–4711. [PubMed] [Google Scholar]
  139. Kim K., Rhee S. G., Stadtman E. R. Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J Biol Chem. 1985 Dec 15;260(29):15394–15397. [PubMed] [Google Scholar]
  140. Knight K. L., Mudd J. B. The reaction of ozone with glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys. 1984 Feb 15;229(1):259–269. doi: 10.1016/0003-9861(84)90152-8. [DOI] [PubMed] [Google Scholar]
  141. Krause G. S., DeGracia D. J., Skjaerlund J. M., O'Neil B. J. Assessment of free radical-induced damage in brain proteins after ischemia and reperfusion. Resuscitation. 1992 Feb;23(1):59–69. doi: 10.1016/0300-9572(92)90162-6. [DOI] [PubMed] [Google Scholar]
  142. Kusama Y., Bernier M., Hearse D. J. Singlet oxygen-induced arrhythmias. Dose- and light-response studies for photoactivation of rose bengal in the rat heart. Circulation. 1989 Nov;80(5):1432–1448. doi: 10.1161/01.cir.80.5.1432. [DOI] [PubMed] [Google Scholar]
  143. Kwon N. S., Chan P. C., Kesner L. Inactivation of alpha 1-proteinase inhibitor by Cu(II) and hydrogen peroxide. Agents Actions. 1990 Mar;29(3-4):388–393. doi: 10.1007/BF01966473. [DOI] [PubMed] [Google Scholar]
  144. Leeuwenburgh C., Rasmussen J. E., Hsu F. F., Mueller D. M., Pennathur S., Heinecke J. W. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 1997 Feb 7;272(6):3520–3526. doi: 10.1074/jbc.272.6.3520. [DOI] [PubMed] [Google Scholar]
  145. Levine R. L., Oliver C. N., Fulks R. M., Stadtman E. R. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2120–2124. doi: 10.1073/pnas.78.4.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Levine R. L. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue. J Biol Chem. 1983 Oct 10;258(19):11823–11827. [PubMed] [Google Scholar]
  147. Levine R. L., Williams J. A., Stadtman E. R., Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–357. doi: 10.1016/s0076-6879(94)33040-9. [DOI] [PubMed] [Google Scholar]
  148. Levitzki A., Anbar M., Berger A. Specific oxidation of peptides via their copper complexes. Biochemistry. 1967 Dec;6(12):3757–3765. doi: 10.1021/bi00864a020. [DOI] [PubMed] [Google Scholar]
  149. Li S., Nguyen T. H., Schöneich C., Borchardt R. T. Aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation. Biochemistry. 1995 May 2;34(17):5762–5772. doi: 10.1021/bi00017a008. [DOI] [PubMed] [Google Scholar]
  150. Li S., Schöneich C., Borchardt R. T. Chemical pathways of peptide degradation. VIII. Oxidation of methionine in small model peptides by prooxidant/transition metal ion systems: influence of selective scavengers for reactive oxygen intermediates. Pharm Res. 1995 Mar;12(3):348–355. doi: 10.1023/a:1016240115675. [DOI] [PubMed] [Google Scholar]
  151. Licht S., Gerfen G. J., Stubbe J. Thiyl radicals in ribonucleotide reductases. Science. 1996 Jan 26;271(5248):477–481. doi: 10.1126/science.271.5248.477. [DOI] [PubMed] [Google Scholar]
  152. Liu Y., Rosenthal R. E., Starke-Reed P., Fiskum G. Inhibition of postcardiac arrest brain protein oxidation by acetyl-L-carnitine. Free Radic Biol Med. 1993 Dec;15(6):667–670. doi: 10.1016/0891-5849(93)90171-p. [DOI] [PubMed] [Google Scholar]
  153. Lyras L., Evans P. J., Shaw P. J., Ince P. G., Halliwell B. Oxidative damage and motor neurone disease difficulties in the measurement of protein carbonyls in human brain tissue. Free Radic Res. 1996 May;24(5):397–406. doi: 10.3109/10715769609088038. [DOI] [PubMed] [Google Scholar]
  154. Mander E. L., Dean R. T., Stanley K. K., Jessup W. Apolipoprotein B of oxidized LDL accumulates in the lysosomes of macrophages. Biochim Biophys Acta. 1994 Apr 14;1212(1):80–92. doi: 10.1016/0005-2760(94)90192-9. [DOI] [PubMed] [Google Scholar]
  155. Mao S. S., Holler T. P., Bollinger J. M., Jr, Yu G. X., Johnston M. I., Stubbe J. Interaction of C225SR1 mutant subunit of ribonucleotide reductase with R2 and nucleoside diphosphates: tales of a suicidal enzyme. Biochemistry. 1992 Oct 13;31(40):9744–9751. doi: 10.1021/bi00155a030. [DOI] [PubMed] [Google Scholar]
  156. Marcillat O., Zhang Y., Lin S. W., Davies K. J. Mitochondria contain a proteolytic system which can recognize and degrade oxidatively-denatured proteins. Biochem J. 1988 Sep 15;254(3):677–683. doi: 10.1042/bj2540677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Marquez L. A., Dunford H. B. Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications for lipoprotein peroxidation studies. J Biol Chem. 1995 Dec 22;270(51):30434–30440. doi: 10.1074/jbc.270.51.30434. [DOI] [PubMed] [Google Scholar]
  158. Marx G., Chevion M. Fibrinogen coagulation without thrombin: reaction with vitamin C and copper(II). Thromb Res. 1985 Oct 1;40(1):11–18. doi: 10.1016/0049-3848(85)90345-7. [DOI] [PubMed] [Google Scholar]
  159. Marx G., Chevion M. Site-specific modification of albumin by free radicals. Reaction with copper(II) and ascorbate. Biochem J. 1986 Jun 1;236(2):397–400. doi: 10.1042/bj2360397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Maskos Z., Rush J. D., Koppenol W. H. The hydroxylation of phenylalanine and tyrosine: a comparison with salicylate and tryptophan. Arch Biochem Biophys. 1992 Aug 1;296(2):521–529. doi: 10.1016/0003-9861(92)90606-w. [DOI] [PubMed] [Google Scholar]
  161. Masuda Y., Murano T. Effect of linoleic acid hydroperoxide on liver microsomal enzymes in vitro. Jpn J Pharmacol. 1979 Apr;29(2):179–186. doi: 10.1254/jjp.29.179. [DOI] [PubMed] [Google Scholar]
  162. Matthews W., Driscoll J., Tanaka K., Ichihara A., Goldberg A. L. Involvement of the proteasome in various degradative processes in mammalian cells. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2597–2601. doi: 10.1073/pnas.86.8.2597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. McNamara M., Augusteyn R. C. The effects of hydrogen peroxide on lens proteins: a possible model for nuclear cataract. Exp Eye Res. 1984 Jan;38(1):45–56. doi: 10.1016/0014-4835(84)90137-4. [DOI] [PubMed] [Google Scholar]
  164. Mohsenin V., Gee J. L. Oxidation of alpha 1-protease inhibitor: role of lipid peroxidation products. J Appl Physiol (1985) 1989 May;66(5):2211–2215. doi: 10.1152/jappl.1989.66.5.2211. [DOI] [PubMed] [Google Scholar]
  165. Monboisse J. C., Braquet P., Randoux A., Borel J. P. Non-enzymatic degradation of acid-soluble calf skin collagen by superoxide ion: protective effect of flavonoids. Biochem Pharmacol. 1983 Jan 1;32(1):53–58. doi: 10.1016/0006-2952(83)90651-2. [DOI] [PubMed] [Google Scholar]
  166. Montine T. J., Amarnath V., Martin M. E., Strittmatter W. J., Graham D. G. E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am J Pathol. 1996 Jan;148(1):89–93. [PMC free article] [PubMed] [Google Scholar]
  167. Moskovitz J., Jenkins N. A., Gilbert D. J., Copeland N. G., Jursky F., Weissbach H., Brot N. Chromosomal localization of the mammalian peptide-methionine sulfoxide reductase gene and its differential expression in various tissues. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3205–3208. doi: 10.1073/pnas.93.8.3205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Mukhopadhyay C. K., Chatterjee I. B. Free metal ion-independent oxidative damage of collagen. Protection by ascorbic acid. J Biol Chem. 1994 Dec 2;269(48):30200–30205. [PubMed] [Google Scholar]
  169. Mukhopadhyay C. K., Ghosh M. K., Chatterjee I. B. Ascorbic acid prevents lipid peroxidation and oxidative damage of proteins in guinea pig extrahepatic tissue microsomes. Mol Cell Biochem. 1995 Jan 12;142(1):71–78. doi: 10.1007/BF00928915. [DOI] [PubMed] [Google Scholar]
  170. Mukhopadhyay M., Mukhopadhyay C. K., Chatterjee I. B. Protective effect of ascorbic acid against lipid peroxidation and oxidative damage in cardiac microsomes. Mol Cell Biochem. 1993 Sep 8;126(1):69–75. doi: 10.1007/BF01772209. [DOI] [PubMed] [Google Scholar]
  171. Nadkarni D. V., Sayre L. M. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal. Chem Res Toxicol. 1995 Mar;8(2):284–291. doi: 10.1021/tx00044a014. [DOI] [PubMed] [Google Scholar]
  172. Nakamura K., Stadtman E. R. Oxidative inactivation of glutamine synthetase subunits. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2011–2015. doi: 10.1073/pnas.81.7.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Neuzil J., Gebicki J. M., Stocker R. Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochem J. 1993 Aug 1;293(Pt 3):601–606. doi: 10.1042/bj2930601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Neuzil J., Stocker R. Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Lett. 1993 Oct 4;331(3):281–284. doi: 10.1016/0014-5793(93)80353-v. [DOI] [PubMed] [Google Scholar]
  175. Neuzil J., Thomas S. R., Stocker R. Requirement for, promotion, or inhibition by alpha-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation. Free Radic Biol Med. 1997;22(1-2):57–71. doi: 10.1016/s0891-5849(96)00224-9. [DOI] [PubMed] [Google Scholar]
  176. Nielsen H. K., Löliger J., Hurrell R. F. Reactions of proteins with oxidizing lipids. 1. Analytical measurements of lipid oxidation and of amino acid losses in a whey protein-methyl linolenate model system. Br J Nutr. 1985 Jan;53(1):61–73. doi: 10.1079/bjn19850011. [DOI] [PubMed] [Google Scholar]
  177. Ohad I., Kyle D. J., Arntzen C. J. Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol. 1984 Aug;99(2):481–485. doi: 10.1083/jcb.99.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Oliver C. N., Ahn B. W., Moerman E. J., Goldstein S., Stadtman E. R. Age-related changes in oxidized proteins. J Biol Chem. 1987 Apr 25;262(12):5488–5491. [PubMed] [Google Scholar]
  179. Oliver C. N. Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils. Arch Biochem Biophys. 1987 Feb 15;253(1):62–72. doi: 10.1016/0003-9861(87)90637-0. [DOI] [PubMed] [Google Scholar]
  180. Orr C. W. Studies on ascorbic acid. I. Factors influencing the ascorbate-mediated inhibition of catalase. Biochemistry. 1967 Oct;6(10):2995–3000. doi: 10.1021/bi00862a004. [DOI] [PubMed] [Google Scholar]
  181. Orr C. W. Studies on ascorbic acid. II. Physical changes in catalase following incubation with ascorbate or ascorbate and copper (II). Biochemistry. 1967 Oct;6(10):3000–3006. doi: 10.1021/bi00862a005. [DOI] [PubMed] [Google Scholar]
  182. Orr W. C., Sohal R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994 Feb 25;263(5150):1128–1130. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  183. Parhami F., Fang Z. T., Fogelman A. M., Andalibi A., Territo M. C., Berliner J. A. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest. 1993 Jul;92(1):471–478. doi: 10.1172/JCI116590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Parinandi N. L., Zwizinski C. W., Schmid H. H. Free radical-induced alterations of myocardial membrane proteins. Arch Biochem Biophys. 1991 Aug 15;289(1):118–123. doi: 10.1016/0003-9861(91)90450-w. [DOI] [PubMed] [Google Scholar]
  185. Pedersen J. Z., Finazzi-Agrò A. Protein-radical enzymes. FEBS Lett. 1993 Jun 28;325(1-2):53–58. doi: 10.1016/0014-5793(93)81412-s. [DOI] [PubMed] [Google Scholar]
  186. Pellmar T. C. Use of brain slices in the study of free-radical actions. J Neurosci Methods. 1995 Jun;59(1):93–98. doi: 10.1016/0165-0270(94)00198-p. [DOI] [PubMed] [Google Scholar]
  187. Poston J. M., Parenteau G. L. Biochemical effects of ischemia on isolated, perfused rat heart tissues. Arch Biochem Biophys. 1992 May 15;295(1):35–41. doi: 10.1016/0003-9861(92)90484-e. [DOI] [PubMed] [Google Scholar]
  188. Prinsze C., Dubbelman T. M., Van Steveninck J. Protein damage, induced by small amounts of photodynamically generated singlet oxygen or hydroxyl radicals. Biochim Biophys Acta. 1990 Apr 19;1038(2):152–157. doi: 10.1016/0167-4838(90)90198-o. [DOI] [PubMed] [Google Scholar]
  189. Prütz W. A. Catalytic reduction of Fe(III)-cytochrome-c involving stable radiolysis products derived from disulphides, proteins and thiols. Int J Radiat Biol. 1992 May;61(5):593–602. doi: 10.1080/09553009214551401. [DOI] [PubMed] [Google Scholar]
  190. Puchała M., Schuessler H. Oxygen effect in the radiolysis of proteins. III. Haemoglobin. Int J Radiat Biol. 1993 Aug;64(2):149–156. doi: 10.1080/09553009314551231. [DOI] [PubMed] [Google Scholar]
  191. Puchała M., Schuessler H. Oxygen effect in the radiolysis of proteins. IV. Myoglobin. Int J Pept Protein Res. 1995 Sep-Oct;46(3-4):326–332. doi: 10.1111/j.1399-3011.1995.tb00605.x. [DOI] [PubMed] [Google Scholar]
  192. Puttfarcken P. S., Manelli A. M., Neilly J., Frail D. E. Inhibition of age-induced beta-amyloid neurotoxicity in rat hippocampal cells. Exp Neurol. 1996 Mar;138(1):73–81. doi: 10.1006/exnr.1996.0048. [DOI] [PubMed] [Google Scholar]
  193. Quintanilha A. T., Davies K. J. Vitamin E deficiency and photosensitization of electron-transport carriers in microsomes. FEBS Lett. 1982 Mar 22;139(2):241–244. doi: 10.1016/0014-5793(82)80861-2. [DOI] [PubMed] [Google Scholar]
  194. RIESER P. Radiation-induced alteration of fibrinogen clotting rate and clot lability. Proc Soc Exp Biol Med. 1956 Apr;91(4):654–657. doi: 10.3181/00379727-91-22362. [DOI] [PubMed] [Google Scholar]
  195. ROWBOTTOM J. The radiolysis of aqueous solutions of tyrosine. J Biol Chem. 1955 Feb;212(2):877–885. [PubMed] [Google Scholar]
  196. Raper H. S. Note on the oxidation of tyrosine, tyramine and phenylalanine with hydrogen peroxide. Biochem J. 1932;26(6):2000–2004. doi: 10.1042/bj0262000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Reinheckel T., Wiswedel I., Noack H., Augustin W. Electrophoretic evidence for the impairment of complexes of the respiratory chain during iron/ascorbate induced peroxidation in isolated rat liver mitochondria. Biochim Biophys Acta. 1995 Oct 4;1239(1):45–50. doi: 10.1016/0005-2736(95)00142-p. [DOI] [PubMed] [Google Scholar]
  198. Rhee S. G., Kim K. H., Chae H. Z., Yim M. B., Uchida K., Netto L. E., Stadtman E. R. Antioxidant defense mechanisms: a new thiol-specific antioxidant enzyme. Ann N Y Acad Sci. 1994 Nov 17;738:86–92. doi: 10.1111/j.1749-6632.1994.tb21793.x. [DOI] [PubMed] [Google Scholar]
  199. Richards D. M., Dean R. T., Jessup W. Membrane proteins are critical targets in free radical mediated cytolysis. Biochim Biophys Acta. 1988 Dec 22;946(2):281–288. doi: 10.1016/0005-2736(88)90403-8. [DOI] [PubMed] [Google Scholar]
  200. Richter C., Gogvadze V., Laffranchi R., Schlapbach R., Schweizer M., Suter M., Walter P., Yaffee M. Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta. 1995 May 24;1271(1):67–74. doi: 10.1016/0925-4439(95)00012-s. [DOI] [PubMed] [Google Scholar]
  201. Richter C., Park J. W., Ames B. N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465–6467. doi: 10.1073/pnas.85.17.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Rivett A. J., Levine R. L. Metal-catalyzed oxidation of Escherichia coli glutamine synthetase: correlation of structural and functional changes. Arch Biochem Biophys. 1990 Apr;278(1):26–34. doi: 10.1016/0003-9861(90)90226-o. [DOI] [PubMed] [Google Scholar]
  203. Rivett A. J., Roseman J. E., Oliver C. N., Levine R. L., Stadtman E. R. Covalent modification of proteins by mixed-function oxidation: recognition by intracellular proteases. Prog Clin Biol Res. 1985;180:317–328. [PubMed] [Google Scholar]
  204. Roberts C. R., Dean R. T. Degradation of cartilage by macrophages in culture: evidence for the involvement of an enzyme which is associated with the cell surface. Connect Tissue Res. 1986;14(3):199–212. doi: 10.3109/03008208609014260. [DOI] [PubMed] [Google Scholar]
  205. Roberts C. R., Roughley P. J., Mort J. S. Degradation of human proteoglycan aggregate induced by hydrogen peroxide. Protein fragmentation, amino acid modification and hyaluronic acid cleavage. Biochem J. 1989 May 1;259(3):805–811. doi: 10.1042/bj2590805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Rodgers M. A., Sokol H. A., Garrison W. M. The radiation-induced "hydrolysis" of the peptide boned. J Am Chem Soc. 1968 Jan 31;90(3):795–796. doi: 10.1021/ja01005a045. [DOI] [PubMed] [Google Scholar]
  207. Rokutan K., Thomas J. A., Sies H. Specific S-thiolation of a 30-kDa cytosolic protein from rat liver under oxidative stress. Eur J Biochem. 1989 Jan 15;179(1):233–239. doi: 10.1111/j.1432-1033.1989.tb14546.x. [DOI] [PubMed] [Google Scholar]
  208. Rosselli F., Ridet A., Soussi T., Duchaud E., Alapetite C., Moustacchi E. p53-dependent pathway of radio-induced apoptosis is altered in Fanconi anemia. Oncogene. 1995 Jan 5;10(1):9–17. [PubMed] [Google Scholar]
  209. Rossi F., De Togni P., Bellavite P., Della Bianca V., Grzeskowiak M. Relationship between the binding of N-formylmethionylleucylphenylalanine and the respiratory response in human neutrophils. Biochim Biophys Acta. 1983 Jul 29;758(2):168–175. doi: 10.1016/0304-4165(83)90298-2. [DOI] [PubMed] [Google Scholar]
  210. Roubal W. T., Tappel A. L. Damage to proteins, enzymes, and amino acids by peroxidizing lipids. Arch Biochem Biophys. 1966 Jan;113(1):5–8. doi: 10.1016/0003-9861(66)90150-0. [DOI] [PubMed] [Google Scholar]
  211. Rzepecki L. M., Waite J. H. The byssus of the zebra mussel, Dreissena polymorpha. I: Morphology and in situ protein processing during maturation. Mol Mar Biol Biotechnol. 1993 Oct;2(5):255–266. [PubMed] [Google Scholar]
  212. Rzepecki L. M., Waite J. H. Wresting the muscle from mussel beards: research and applications. Mol Mar Biol Biotechnol. 1995 Dec;4(4):313–322. [PubMed] [Google Scholar]
  213. Samuni A., Chevion M., Halpern Y. S., Ilan Y. A., Czapski G. Radiation-induced damage in T4 bacteriophage: the effect of superoxide radicals and molecular oxygen. Radiat Res. 1978 Sep;75(3):489–496. [PubMed] [Google Scholar]
  214. Sattler W., Maiorino M., Stocker R. Reduction of HDL- and LDL-associated cholesterylester and phospholipid hydroperoxides by phospholipid hydroperoxide glutathione peroxidase and Ebselen (PZ 51). Arch Biochem Biophys. 1994 Mar;309(2):214–221. doi: 10.1006/abbi.1994.1105. [DOI] [PubMed] [Google Scholar]
  215. Schuessler H., Herget A. Oxygen effect in the radiolysis of proteins. I. Lactate dehydrogenase. Int J Radiat Biol Relat Stud Phys Chem Med. 1980 Jan;37(1):71–80. doi: 10.1080/09553008014550071. [DOI] [PubMed] [Google Scholar]
  216. Schuessler H., Niemczyk P., Eichhorn M., Pauly H. On the radiation-induced aggregates of lactate dehydrogenase. Int J Radiat Biol Relat Stud Phys Chem Med. 1975 Nov;28(5):401–408. doi: 10.1080/09553007514551221. [DOI] [PubMed] [Google Scholar]
  217. Schuessler H., Schilling K. Oxygen effect in the radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 Mar;45(3):267–281. doi: 10.1080/09553008414550381. [DOI] [PubMed] [Google Scholar]
  218. Sell D. R., Monnier V. M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989 Dec 25;264(36):21597–21602. [PubMed] [Google Scholar]
  219. Selvaraj R. J., Paul B. B., Strauss R. R., Jacobs A. A., Sbarra A. J. Oxidative peptide cleavage and decarboxylation by the MPO-H2O2-Cl- antimicrobial system. Infect Immun. 1974 Feb;9(2):255–260. doi: 10.1128/iai.9.2.255-260.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Seres T., Ravichandran V., Moriguchi T., Rokutan K., Thomas J. A., Johnston R. B., Jr Protein S-thiolation and dethiolation during the respiratory burst in human monocytes. A reversible post-translational modification with potential for buffering the effects of oxidant stress. J Immunol. 1996 Mar 1;156(5):1973–1980. [PubMed] [Google Scholar]
  221. Shacter E., Williams J. A., Levine R. L. Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radic Biol Med. 1995 Apr;18(4):815–821. doi: 10.1016/0891-5849(95)93872-4. [DOI] [PubMed] [Google Scholar]
  222. Shacter E., Williams J. A., Lim M., Levine R. L. Differential susceptibility of plasma proteins to oxidative modification: examination by western blot immunoassay. Free Radic Biol Med. 1994 Nov;17(5):429–437. doi: 10.1016/0891-5849(94)90169-4. [DOI] [PubMed] [Google Scholar]
  223. Simpson J. A., Dean R. T. Stimulatory and inhibitory actions of proteins and amino acids on copper-catalysed free radical generation in the bulk phase. Free Radic Res Commun. 1990;10(4-5):303–312. doi: 10.3109/10715769009149899. [DOI] [PubMed] [Google Scholar]
  224. Simpson J. A., Narita S., Gieseg S., Gebicki S., Gebicki J. M., Dean R. T. Long-lived reactive species on free-radical-damaged proteins. Biochem J. 1992 Mar 15;282(Pt 3):621–624. doi: 10.1042/bj2820621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Smith C. D., Carney J. M., Starke-Reed P. E., Oliver C. N., Stadtman E. R., Floyd R. A., Markesbery W. R. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10540–10543. doi: 10.1073/pnas.88.23.10540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Smith C. D., Carney J. M., Tatsumo T., Stadtman E. R., Floyd R. A., Markesbery W. R. Protein oxidation in aging brain. Ann N Y Acad Sci. 1992 Nov 21;663:110–119. doi: 10.1111/j.1749-6632.1992.tb38654.x. [DOI] [PubMed] [Google Scholar]
  227. Smith C. E., Stack M. S., Johnson D. A. Ozone effects on inhibitors of human neutrophil proteinases. Arch Biochem Biophys. 1987 Feb 15;253(1):146–155. doi: 10.1016/0003-9861(87)90647-3. [DOI] [PubMed] [Google Scholar]
  228. Smith M. A., Perry G., Richey P. L., Sayre L. M., Anderson V. E., Beal M. F., Kowall N. Oxidative damage in Alzheimer's. Nature. 1996 Jul 11;382(6587):120–121. doi: 10.1038/382120b0. [DOI] [PubMed] [Google Scholar]
  229. Smith M. A., Richey P. L., Taneda S., Kutty R. K., Sayre L. M., Monnier V. M., Perry G. Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer's disease. Ann N Y Acad Sci. 1994 Nov 17;738:447–454. doi: 10.1111/j.1749-6632.1994.tb21836.x. [DOI] [PubMed] [Google Scholar]
  230. Sohal R. S., Agarwal A., Agarwal S., Orr W. C. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem. 1995 Jun 30;270(26):15671–15674. doi: 10.1074/jbc.270.26.15671. [DOI] [PubMed] [Google Scholar]
  231. Sohal R. S., Agarwal S., Sohal B. H. Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus). Mech Ageing Dev. 1995 Jun 30;81(1):15–25. doi: 10.1016/0047-6374(94)01578-a. [DOI] [PubMed] [Google Scholar]
  232. Sohal R. S., Arnold L., Orr W. C. Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD+ in Drosophila melanogaster. Mech Ageing Dev. 1990 Dec;56(3):223–235. doi: 10.1016/0047-6374(90)90084-s. [DOI] [PubMed] [Google Scholar]
  233. Sohal R. S., Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic Biol Med. 1994 May;16(5):621–626. doi: 10.1016/0891-5849(94)90062-0. [DOI] [PubMed] [Google Scholar]
  234. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Stadtman E. R. Ascorbic acid and oxidative inactivation of proteins. Am J Clin Nutr. 1991 Dec;54(6 Suppl):1125S–1128S. doi: 10.1093/ajcn/54.6.1125s. [DOI] [PubMed] [Google Scholar]
  236. Stadtman E. R., Berlett B. S. Fenton chemistry. Amino acid oxidation. J Biol Chem. 1991 Sep 15;266(26):17201–17211. [PubMed] [Google Scholar]
  237. Stadtman E. R., Chock P. B. Interconvertible enzyme cascades in metabolic regulation. Curr Top Cell Regul. 1978;13:53–95. doi: 10.1016/b978-0-12-152813-3.50007-0. [DOI] [PubMed] [Google Scholar]
  238. Stadtman E. R. Discovery of glutamine synthetase cascade. Methods Enzymol. 1990;182:793–809. doi: 10.1016/0076-6879(90)82062-7. [DOI] [PubMed] [Google Scholar]
  239. Stadtman E. R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem. 1993;62:797–821. doi: 10.1146/annurev.bi.62.070193.004053. [DOI] [PubMed] [Google Scholar]
  240. Stadtman E. R. Protein oxidation and aging. Science. 1992 Aug 28;257(5074):1220–1224. doi: 10.1126/science.1355616. [DOI] [PubMed] [Google Scholar]
  241. Stadtman E. R., Starke-Reed P. E., Oliver C. N., Carney J. M., Floyd R. A. Protein modification in aging. EXS. 1992;62:64–72. doi: 10.1007/978-3-0348-7460-1_7. [DOI] [PubMed] [Google Scholar]
  242. Stief T. W., Stief M. H., Ehrenthal W., Darius H., Martin E. Nonradical oxidants of the phagocyte type induce the activation of plasmatic single chain- urokinase. Thromb Res. 1991 Dec 1;64(5):597–610. [PubMed] [Google Scholar]
  243. Stocker R. Lipoprotein oxidation: mechanistic aspects, methodological approaches and clinical relevance. Curr Opin Lipidol. 1994 Dec;5(6):422–433. [PubMed] [Google Scholar]
  244. Storz G., Tartaglia L. A. OxyR: a regulator of antioxidant genes. J Nutr. 1992 Mar;122(3 Suppl):627–630. doi: 10.1093/jn/122.suppl_3.627. [DOI] [PubMed] [Google Scholar]
  245. Suarna C., Dean R. T., May J., Stocker R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1616–1624. doi: 10.1161/01.atv.15.10.1616. [DOI] [PubMed] [Google Scholar]
  246. Szweda L. I., Uchida K., Tsai L., Stadtman E. R. Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem. 1993 Feb 15;268(5):3342–3347. [PubMed] [Google Scholar]
  247. Tappel A. L. Lipid peroxidation damage to cell components. Fed Proc. 1973 Aug;32(8):1870–1874. [PubMed] [Google Scholar]
  248. Taylor S. W., Molinski T. F., Rzepecki L. M., Waite J. H. Oxidation of peptidyl 3,4-dihydroxyphenylalanine analogues: implications for the biosynthesis of tunichromes and related oligopeptides. J Nat Prod. 1991 May-Jun;54(3):918–922. doi: 10.1021/np50075a034. [DOI] [PubMed] [Google Scholar]
  249. Terato H., Yamamoto O. Hydrated electron-induced inactivation of tyrosinase in aqueous solution by exposure to cobalt-60 gamma-rays. I. Cresolase activity. Biochem Mol Biol Int. 1994 Sep;34(2):295–300. [PubMed] [Google Scholar]
  250. Teshima S., Rokutan K., Takahashi M., Nikawa T., Kishi K. Induction of heat shock proteins and their possible roles in macrophages during activation by macrophage colony-stimulating factor. Biochem J. 1996 Apr 15;315(Pt 2):497–504. doi: 10.1042/bj3150497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Thomas E. L., Aune T. M. Oxidation of Escherichia coli sulfhydryl components by the peroxidase-hydrogen peroxide-iodide antimicrobial system. Antimicrob Agents Chemother. 1978 Jun;13(6):1006–1010. doi: 10.1128/aac.13.6.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Thomas E. L., Jefferson M. M., Grisham M. B. Myeloperoxidase-catalyzed incorporation of amines into proteins: role of hypochlorous acid and dichloramines. Biochemistry. 1982 Nov 23;21(24):6299–6308. doi: 10.1021/bi00267a040. [DOI] [PubMed] [Google Scholar]
  253. Thomas R. M., Nauseef W. M., Iyer S. S., Peterson M. W., Stone P. J., Clark R. A. A cytosolic inhibitor of human neutrophil elastase and cathepsin G. J Leukoc Biol. 1991 Dec;50(6):568–579. doi: 10.1002/jlb.50.6.568. [DOI] [PubMed] [Google Scholar]
  254. Thomas S. M., Gebicki J. M., Dean R. T. Radical initiated alpha-tocopherol depletion and lipid peroxidation in mitochondrial membranes. Biochim Biophys Acta. 1989 Apr 3;1002(2):189–197. doi: 10.1016/0005-2760(89)90286-5. [DOI] [PubMed] [Google Scholar]
  255. Toledo I., Aguirre J., Hansberg W. Enzyme inactivation related to a hyperoxidant state during conidiation of Neurospora crassa. Microbiology. 1994 Sep;140(Pt 9):2391–2397. doi: 10.1099/13500872-140-9-2391. [DOI] [PubMed] [Google Scholar]
  256. Toledo I., Noronha-Dutra A. A., Hansberg W. Loss of NAD(P)-reducing power and glutathione disulfide excretion at the start of induction of aerial growth in Neurospora crassa. J Bacteriol. 1991 May;173(10):3243–3249. doi: 10.1128/jb.173.10.3243-3249.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Toledo I., Rangel P., Hansberg W. Redox imbalance at the start of each morphogenetic step of Neurospora crassa conidiation. Arch Biochem Biophys. 1995 Jun 1;319(2):519–524. doi: 10.1006/abbi.1995.1326. [DOI] [PubMed] [Google Scholar]
  258. Trelstad R. L., Lawley K. R., Holmes L. B. Nonenzymatic hydroxylations of proline and lysine by reduced oxygen derivatives. Nature. 1981 Jan 22;289(5795):310–312. doi: 10.1038/289310a0. [DOI] [PubMed] [Google Scholar]
  259. Turnbough C. L., Jr, Switzer R. L. Oxygen-dependent inactivation of glutamine phosphoribosylpyrophosphate amidotransferase in stationary-phase cultures of Bacillus subtilis. J Bacteriol. 1975 Jan;121(1):108–114. doi: 10.1128/jb.121.1.108-114.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Turnbough C. L., Jr, Switzer R. L. Oxygen-dependent inactivation of glutamine phosphoribosylpyrophosphate amidotransferase in vitro inactivation. J Bacteriol. 1975 Jan;121(1):115–120. doi: 10.1128/jb.121.1.115-120.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Uchida K., Itakura K., Kawakishi S., Hiai H., Toyokuni S., Stadtman E. R. Characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch Biochem Biophys. 1995 Dec 20;324(2):241–248. doi: 10.1006/abbi.1995.0036. [DOI] [PubMed] [Google Scholar]
  262. Uchida K., Kato Y., Kawakishi S. A novel mechanism for oxidative cleavage of prolyl peptides induced by the hydroxyl radical. Biochem Biophys Res Commun. 1990 May 31;169(1):265–271. doi: 10.1016/0006-291x(90)91463-3. [DOI] [PubMed] [Google Scholar]
  263. Uchida K., Kawakishi S. 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett. 1993 Oct 18;332(3):208–210. doi: 10.1016/0014-5793(93)80632-5. [DOI] [PubMed] [Google Scholar]
  264. Uchida K., Stadtman E. R. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J Biol Chem. 1993 Mar 25;268(9):6388–6393. [PubMed] [Google Scholar]
  265. Uchida K., Stadtman E. R. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4544–4548. doi: 10.1073/pnas.89.10.4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Van Buskirk J. J., Kirsch W. M., Kleyer D. L., Barkley R. M., Koch T. H. Aminomalonic acid: identification in Escherichia coli and atherosclerotic plaque. Proc Natl Acad Sci U S A. 1984 Feb;81(3):722–725. doi: 10.1073/pnas.81.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Vissers M. C., Winterbourn C. C. The effect of oxidants on neutrophil-mediated degradation of glomerular basement membrane collagen. Biochim Biophys Acta. 1986 Dec 19;889(3):277–286. doi: 10.1016/0167-4889(86)90190-4. [DOI] [PubMed] [Google Scholar]
  268. Vogt W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med. 1995 Jan;18(1):93–105. doi: 10.1016/0891-5849(94)00158-g. [DOI] [PubMed] [Google Scholar]
  269. Wagner A. F., Frey M., Neugebauer F. A., Schäfer W., Knappe J. The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):996–1000. doi: 10.1073/pnas.89.3.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Walker K. W., Lyles M. M., Gilbert H. F. Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active-site cysteine. Biochemistry. 1996 Feb 13;35(6):1972–1980. doi: 10.1021/bi952157n. [DOI] [PubMed] [Google Scholar]
  271. Wang K., Spector A. Alpha-crystallin can act as a chaperone under conditions of oxidative stress. Invest Ophthalmol Vis Sci. 1995 Feb;36(2):311–321. [PubMed] [Google Scholar]
  272. Weiss S. J., Curnutte J. T., Regiani S. Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J Immunol. 1986 Jan;136(2):636–641. [PubMed] [Google Scholar]
  273. Wells-Knecht M. C., Huggins T. G., Dyer D. G., Thorpe S. R., Baynes J. W. Oxidized amino acids in lens protein with age. Measurement of o-tyrosine and dityrosine in the aging human lens. J Biol Chem. 1993 Jun 15;268(17):12348–12352. [PubMed] [Google Scholar]
  274. Wells-Knecht M. C., Thorpe S. R., Baynes J. W. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry. 1995 Nov 21;34(46):15134–15141. doi: 10.1021/bi00046a020. [DOI] [PubMed] [Google Scholar]
  275. Wiertz E. J., Tortorella D., Bogyo M., Yu J., Mothes W., Jones T. R., Rapoport T. A., Ploegh H. L. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature. 1996 Dec 5;384(6608):432–438. doi: 10.1038/384432a0. [DOI] [PubMed] [Google Scholar]
  276. Wilson J. B., Brennan S. O., Allen J., Shaw J. G., Gu L. H., Huisman T. H. The M gamma chain of human fetal hemoglobin is an A gamma chain with an in vitro modification of gamma 141 leucine to hydroxyleucine. J Chromatogr. 1993 Jul 23;617(1):37–42. doi: 10.1016/0378-4347(93)80418-4. [DOI] [PubMed] [Google Scholar]
  277. Wolff S. P., Dean R. T. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J. 1986 Mar 1;234(2):399–403. doi: 10.1042/bj2340399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987 Jul 1;245(1):243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Yamada M., Hearse D. J., Curtis M. J. Reperfusion and readmission of oxygen. Pathophysiological relevance of oxygen-derived free radicals to arrhythmogenesis. Circ Res. 1990 Nov;67(5):1211–1224. doi: 10.1161/01.res.67.5.1211. [DOI] [PubMed] [Google Scholar]
  280. Yamashita Y., Shimokata K., Mizuno S., Daikoku T., Tsurumi T., Nishiyama Y. Calnexin acts as a molecular chaperone during the folding of glycoprotein B of human cytomegalovirus. J Virol. 1996 Apr;70(4):2237–2246. doi: 10.1128/jvi.70.4.2237-2246.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Yasutake M., Ibuki C., Hearse D. J., Avkiran M. Na+/H+ exchange and reperfusion arrhythmias: protection by intracoronary infusion of a novel inhibitor. Am J Physiol. 1994 Dec;267(6 Pt 2):H2430–H2440. doi: 10.1152/ajpheart.1994.267.6.H2430. [DOI] [PubMed] [Google Scholar]
  282. Yim H. S., Kang S. O., Hah Y. C., Chock P. B., Yim M. B. Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-cross-linked free radicals. J Biol Chem. 1995 Nov 24;270(47):28228–28233. doi: 10.1074/jbc.270.47.28228. [DOI] [PubMed] [Google Scholar]
  283. Yim M. B., Chae H. Z., Rhee S. G., Chock P. B., Stadtman E. R. On the protective mechanism of the thiol-specific antioxidant enzyme against the oxidative damage of biomacromolecules. J Biol Chem. 1994 Jan 21;269(3):1621–1626. [PubMed] [Google Scholar]
  284. Ylä-Herttuala S., Luoma J., Viita H., Hiltunen T., Sisto T., Nikkari T. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein. J Clin Invest. 1995 Jun;95(6):2692–2698. doi: 10.1172/JCI117971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. van der Vliet A., Eiserich J. P., O'Neill C. A., Halliwell B., Cross C. E. Tyrosine modification by reactive nitrogen species: a closer look. Arch Biochem Biophys. 1995 Jun 1;319(2):341–349. doi: 10.1006/abbi.1995.1303. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES