Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):19–23. doi: 10.1042/bj3240019

Deletion of 24 amino acids from the C-terminus of phosphatidylinositol transfer protein causes loss of phospholipase C-mediated inositol lipid signalling.

S Prosser 1, R Sarra 1, P Swigart 1, A Ball 1, S Cockcroft 1
PMCID: PMC1218395  PMID: 9164835

Abstract

Phosphatidylinositol transfer protein alpha (PITPalpha) is a 32 kDa protein of 270 amino acids that is essential for phospholipase C-mediated phosphatidylinositol bisphosphate hydrolysis. In addition, it binds and transfers phosphatidylinositol and phosphatidylcholine between membrane compartments in vitro. Here we have used limited proteolysis of PITPalpha by subtilisin to identify the structural requirements for function. Digestion by subtilisin results in the generation of a number of slightly smaller peptide fragments, the major fragment being identified as a 29 kDa protein. The fragments were resolved by size-exclusion chromatography and were found to be totally inactive in both in vivo PLC reconstitution assays and in vitro phosphatidylinositol transfer assays. N-terminal sequencing and MS of the major 29 kDa fragment shows that cleavage occurs at the C-terminus of PITP at Met246, leading to a deletion of 24 amino acid residues. We conclude that the C-terminus plays an important role in mediating PLC signalling in vivo and lipid transfer in vitro, supporting the notion that lipid transfer may be a facet of PITP function in vivo.

Full Text

The Full Text of this article is available as a PDF (599.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alb J. G., Jr, Gedvilaite A., Cartee R. T., Skinner H. B., Bankaitis V. A. Mutant rat phosphatidylinositol/phosphatidylcholine transfer proteins specifically defective in phosphatidylinositol transfer: implications for the regulation of phospholipid transfer activity. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8826–8830. doi: 10.1073/pnas.92.19.8826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashton D. S., Beddell C. R., Green B. N., Oliver R. W. Rapid validation of molecular structures of biological samples by electrospray-mass spectrometry. FEBS Lett. 1994 Mar 28;342(1):1–6. doi: 10.1016/0014-5793(94)80572-5. [DOI] [PubMed] [Google Scholar]
  3. Cockcroft S., Thomas G. M., Cunningham E., Ball A. Use of cytosol-depleted HL-60 cells for reconstitution studies of G-protein-regulated phosphoinositide-specific phospholipase C-beta isozymes. Methods Enzymol. 1994;238:154–168. doi: 10.1016/0076-6879(94)38014-7. [DOI] [PubMed] [Google Scholar]
  4. Cunningham E., Tan S. K., Swigart P., Hsuan J., Bankaitis V., Cockcroft S. The yeast and mammalian isoforms of phosphatidylinositol transfer protein can all restore phospholipase C-mediated inositol lipid signaling in cytosol-depleted RBL-2H3 and HL-60 cells. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6589–6593. doi: 10.1073/pnas.93.13.6589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cunningham E., Thomas G. M., Ball A., Hiles I., Cockcroft S. Phosphatidylinositol transfer protein dictates the rate of inositol trisphosphate production by promoting the synthesis of PIP2. Curr Biol. 1995 Jul 1;5(7):775–783. doi: 10.1016/s0960-9822(95)00154-0. [DOI] [PubMed] [Google Scholar]
  6. Fensome A., Cunningham E., Prosser S., Tan S. K., Swigart P., Thomas G., Hsuan J., Cockcroft S. ARF and PITP restore GTP gamma S-stimulated protein secretion from cytosol-depleted HL60 cells by promoting PIP2 synthesis. Curr Biol. 1996 Jun 1;6(6):730–738. doi: 10.1016/s0960-9822(09)00454-0. [DOI] [PubMed] [Google Scholar]
  7. Hay J. C., Fisette P. L., Jenkins G. H., Fukami K., Takenawa T., Anderson R. A., Martin T. F. ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion. Nature. 1995 Mar 9;374(6518):173–177. doi: 10.1038/374173a0. [DOI] [PubMed] [Google Scholar]
  8. Hay J. C., Martin T. F. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca(2+)-activated secretion. Nature. 1993 Dec 9;366(6455):572–575. doi: 10.1038/366572a0. [DOI] [PubMed] [Google Scholar]
  9. Kauffmann-Zeh A., Thomas G. M., Ball A., Prosser S., Cunningham E., Cockcroft S., Hsuan J. J. Requirement for phosphatidylinositol transfer protein in epidermal growth factor signaling. Science. 1995 May 26;268(5214):1188–1190. doi: 10.1126/science.7761838. [DOI] [PubMed] [Google Scholar]
  10. Ohashi M., Jan de Vries K., Frank R., Snoek G., Bankaitis V., Wirtz K., Huttner W. B. A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature. 1995 Oct 12;377(6549):544–547. doi: 10.1038/377544a0. [DOI] [PubMed] [Google Scholar]
  11. Tanaka S., Hosaka K. Cloning of a cDNA encoding a second phosphatidylinositol transfer protein of rat brain by complementation of the yeast sec14 mutation. J Biochem. 1994 May;115(5):981–984. doi: 10.1093/oxfordjournals.jbchem.a124448. [DOI] [PubMed] [Google Scholar]
  12. Thomas G. M., Cunningham E., Fensome A., Ball A., Totty N. F., Truong O., Hsuan J. J., Cockcroft S. An essential role for phosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signaling. Cell. 1993 Sep 10;74(5):919–928. doi: 10.1016/0092-8674(93)90471-2. [DOI] [PubMed] [Google Scholar]
  13. Tremblay J. M., Helmkamp G. M., Yarbrough L. R. Limited proteolysis of rat phosphatidylinositol transfer protein by trypsin cleaves the C terminus, enhances binding to lipid vesicles, and reduces phospholipid transfer activity. J Biol Chem. 1996 Aug 30;271(35):21075–21080. doi: 10.1074/jbc.271.35.21075. [DOI] [PubMed] [Google Scholar]
  14. Voziyan P. A., Tremblay J. M., Yarbrough L. R., Helmkamp G. M., Jr Truncations of the C-terminus have different effects on the conformation and activity of phosphatidylinositol transfer protein. Biochemistry. 1996 Sep 24;35(38):12526–12531. doi: 10.1021/bi960562o. [DOI] [PubMed] [Google Scholar]
  15. Westerman J., de Vries K. J., Somerharju P., Timmermans-Hereijgers J. L., Snoek G. T., Wirtz K. W. A sphingomyelin-transferring protein from chicken liver. Use of pyrene-labeled phospholipid. J Biol Chem. 1995 Jun 16;270(24):14263–14266. doi: 10.1074/jbc.270.24.14263. [DOI] [PubMed] [Google Scholar]
  16. Wirtz K. W. Phospholipid transfer proteins. Annu Rev Biochem. 1991;60:73–99. doi: 10.1146/annurev.bi.60.070191.000445. [DOI] [PubMed] [Google Scholar]
  17. de Vries K. J., Heinrichs A. A., Cunningham E., Brunink F., Westerman J., Somerharju P. J., Cockcroft S., Wirtz K. W., Snoek G. T. An isoform of the phosphatidylinositol-transfer protein transfers sphingomyelin and is associated with the Golgi system. Biochem J. 1995 Sep 1;310(Pt 2):643–649. doi: 10.1042/bj3100643. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES