Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):25–28. doi: 10.1042/bj3240025

Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes.

S Baez 1, J Segura-Aguilar 1, M Widersten 1, A S Johansson 1, B Mannervik 1
PMCID: PMC1218396  PMID: 9164836

Abstract

o-Quinones are physiological oxidation products of catecholamines that contribute to redox cycling, toxicity and apoptosis, i.e. the neurodegenerative processes underlying Parkinson's disease and schizophrenia. The present study shows that the cyclized o-quinones aminochrome, dopachrome, adrenochrome and noradrenochrome, derived from dopamine, dopa, adrenaline and noradrenaline respectively, are efficiently conjugated with glutathione in the presence of human glutathione transferase (GST) M2-2. The oxidation product of adrenaline, adrenochrome, is less active as a substrate for GST M2-2, and more efficiently conjugated by GST M1-1. Evidence for expression of GST M2-2 in substantia nigra of human brain was obtained by identification of the corresponding PCR product in a cDNA library. Glutathione conjugation of these quinones is a detoxication reaction that prevents redox cycling, thus indicating that GSTs have a cytoprotective role involving elimination of reactive chemical species originating from the oxidative metabolism of catecholamines. In particular, GST M2-2 has the capacity to provide protection relevant to the prevention of neurodegenerative diseases.

Full Text

The Full Text of this article is available as a PDF (224.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archibald F. S., Fridovich I. The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys. 1982 Apr 1;214(2):452–463. doi: 10.1016/0003-9861(82)90049-2. [DOI] [PubMed] [Google Scholar]
  2. Baez S., Linderson Y., Segura-Aguilar J. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Biochem Mol Med. 1995 Feb;54(1):12–18. doi: 10.1006/bmme.1995.1002. [DOI] [PubMed] [Google Scholar]
  3. Baez S., Linderson Y., Segura-Aguilar J. Superoxide dismutase and catalase prevent the formation of reactive oxygen species during reduction of cyclized dopa ortho-quinone by DT-diaphorase. Chem Biol Interact. 1994 Nov;93(2):103–116. doi: 10.1016/0009-2797(94)90090-6. [DOI] [PubMed] [Google Scholar]
  4. Baez S., Segura-Aguilar J. Effects of superoxide dismutase and catalase during reduction of adrenochrome by DT-diaphorase and NADPH-cytochrome P450 reductase. Biochem Mol Med. 1995 Oct;56(1):37–44. doi: 10.1006/bmme.1995.1054. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Brunmark A., Cadenas E. Reductive addition of glutathione to p-benzoquinone, 2-hydroxy-p-benzoquinone, and p-benzoquinone epoxides. Effect of the hydroxy- and glutathionyl substituents on p-benzohydroquinone autoxidation. Chem Biol Interact. 1988;68(3-4):273–298. doi: 10.1016/0009-2797(88)90021-x. [DOI] [PubMed] [Google Scholar]
  7. Graham D. G. Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson's disease. Neurotoxicology. 1984 Spring;5(1):83–95. [PubMed] [Google Scholar]
  8. Linderson Y., Baez S., Segura-Aguilar J. The protective effect of superoxide dismutase and catalase against formation of reactive oxygen species during reduction of cyclized norepinephrine ortho-quinone by DT-diaphorase. Biochim Biophys Acta. 1994 Jul 6;1200(2):197–204. doi: 10.1016/0304-4165(94)90136-8. [DOI] [PubMed] [Google Scholar]
  9. Llopis J., Ernster L., Cadenas E. Effect of glutathione on the redox transitions of naphthohydroquinone derivatives formed during DT-diaphorase catalysis. Free Radic Res Commun. 1990;8(4-6):271–285. doi: 10.3109/10715769009053360. [DOI] [PubMed] [Google Scholar]
  10. Mannervik B., Awasthi Y. C., Board P. G., Hayes J. D., Di Ilio C., Ketterer B., Listowsky I., Morgenstern R., Muramatsu M., Pearson W. R. Nomenclature for human glutathione transferases. Biochem J. 1992 Feb 15;282(Pt 1):305–306. doi: 10.1042/bj2820305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mannervik B., Guthenberg C. Glutathione transferase (human placenta). Methods Enzymol. 1981;77:231–235. doi: 10.1016/s0076-6879(81)77030-7. [DOI] [PubMed] [Google Scholar]
  12. Offen D., Ziv I., Gorodin S., Barzilai A., Malik Z., Melamed E. Dopamine-induced programmed cell death in mouse thymocytes. Biochim Biophys Acta. 1995 Aug 31;1268(2):171–177. doi: 10.1016/0167-4889(95)00075-4. [DOI] [PubMed] [Google Scholar]
  13. Offen D., Ziv I., Sternin H., Melamed E., Hochman A. Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson's disease. Exp Neurol. 1996 Sep;141(1):32–39. doi: 10.1006/exnr.1996.0136. [DOI] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Segura-Aguilar J., Baez S., Widersten M., Welch C. J., Mannervik B. Human class Mu glutathione transferases, in particular isoenzyme M2-2, catalyze detoxication of the dopamine metabolite aminochrome. J Biol Chem. 1997 Feb 28;272(9):5727–5731. doi: 10.1074/jbc.272.9.5727. [DOI] [PubMed] [Google Scholar]
  16. Segura-Aguilar J., Lind C. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem Biol Interact. 1989;72(3):309–324. doi: 10.1016/0009-2797(89)90006-9. [DOI] [PubMed] [Google Scholar]
  17. Sian J., Dexter D. T., Lees A. J., Daniel S., Agid Y., Javoy-Agid F., Jenner P., Marsden C. D. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994 Sep;36(3):348–355. doi: 10.1002/ana.410360305. [DOI] [PubMed] [Google Scholar]
  18. Smythies J. On the functional of neuromelanin. Proc Biol Sci. 1996 Apr 22;263(1369):487–489. doi: 10.1098/rspb.1996.0073. [DOI] [PubMed] [Google Scholar]
  19. Vorachek W. R., Pearson W. R., Rule G. S. Cloning, expression, and characterization of a class-mu glutathione transferase from human muscle, the product of the GST4 locus. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4443–4447. doi: 10.1073/pnas.88.10.4443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Walkinshaw G., Waters C. M. Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson's disease. J Clin Invest. 1995 Jun;95(6):2458–2464. doi: 10.1172/JCI117946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ziv I., Melamed E., Nardi N., Luria D., Achiron A., Offen D., Barzilai A. Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons--a possible novel pathogenetic mechanism in Parkinson's disease. Neurosci Lett. 1994 Mar 28;170(1):136–140. doi: 10.1016/0304-3940(94)90258-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES