Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):49–55. doi: 10.1042/bj3240049

Differential regulation of natriuretic peptide receptors on ciliary body epithelial cells.

R B Crook 1, A T Chang 1
PMCID: PMC1218400  PMID: 9164840

Abstract

Atrionatriuretic peptide (ANP) lowers intraocular pressure in the eyes of humans and rabbits. We examined the effects of natriuretic peptides on cGMP formation and 125I-labelled-ANP binding to cultured cells derived from ciliary body epithelium, the site of aqueous humour formation in the eye. ANP, brain natriuretic peptide (BNP) and C-natriuretic peptide (CNP) at 1 microM stimulated cGMP formation 8.2(+/-1.2)-fold, 4.8(+/-0.6)-fold and 87.3(+/-12.1)-fold respectively. 125I-ANP bound to intact cells at a single site, with a dissociation constant KD=0.30+/-0.01 nM. BNP was as effective as ANP in displacing 125I-ANP, whereas CNP displaced label with a slightly higher IC50. 125I-ANP binding was displaced >95% by c-ANP, a specific ligand for natriuretic peptide C receptors (NPR-C). Cross-linking of 125I-ANP to cells labelled predominantly a protein of Mr 62000. These data suggest that 125I-ANP binding was primarily to NPR-C, whereas cGMP stimulation occurred primarily via natriuretic peptide B receptors (NPR-B). Vasopressin and histamine, both activators of the inositol phosphate/diacylglycerol phosphate pathway in non-pigmented ciliary epithelial cells, inhibited CNP stimulation of guanylate cyclase (NPR-B) and 125I-ANP binding (NPR-C) by 30-38%. Inhibition was mimicked by PMA, dioctanoylglycerol and phorbol didecanoate, whereas 4alpha phorbol didecanoate had no effect. Staurosporine and bisindolylmaleimide both blocked inhibition of 125I-ANP binding and cGMP formation by PMA. These results suggest that protein kinase C (PKC) down-regulates both NPR-B and NPR-C. PKC down-regulation of NPR-B varied inversely with CNP concentration. Inhibition by 1 microM PMA was 30.6(+/-4.0)% with 500 nM CNP, but 83.4(+/-8.8)% with 10 nM CNP, indicating that increasing CNP could partially overcome inhibition by PMA. Since extracellular CNP levels were not affected by PKC activation, the effect of PKC on NPR-B is best explained as a reduction in NPR-B affinity for CNP. NPR-C measured as 125I-ANP binding was likewise reduced 36.4(+/-5.1)% by exposure to PMA. In contrast with NPR-B inhibition, however, inhibition of NPR-C was due largely to a reduction in the number of receptor binding sites per cell rather than a reduction in receptor affinity for ligand. The data therefore suggest that both NPR-B and NPR-C are down-regulated by PKC, but that the mechanisms of down-regulation of the two receptors are different.

Full Text

The Full Text of this article is available as a PDF (388.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand-Srivastava M. B., Sairam M. R., Cantin M. Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system. Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J Biol Chem. 1990 May 25;265(15):8566–8572. [PubMed] [Google Scholar]
  2. Ballermann B. J., Marala R. B., Sharma R. K. Characterization and regulation by protein kinase C of renal glomerular atrial natriuretic peptide receptor-coupled guanylate cyclase. Biochem Biophys Res Commun. 1988 Dec 15;157(2):755–761. doi: 10.1016/s0006-291x(88)80314-0. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  4. Bianchi C., Anand-Srivastava M. B., De Léan A., Gutkowska J., Forthomme D., Genest J., Cantin M. Localization and characterization of specific receptors for atrial natriuretic factor in the ciliary processes of the eye. Curr Eye Res. 1986 Apr;5(4):283–293. doi: 10.3109/02713688609020054. [DOI] [PubMed] [Google Scholar]
  5. Chang M. S., Lowe D. G., Lewis M., Hellmiss R., Chen E., Goeddel D. V. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature. 1989 Sep 7;341(6237):68–72. doi: 10.1038/341068a0. [DOI] [PubMed] [Google Scholar]
  6. Chinkers M., Garbers D. L., Chang M. S., Lowe D. G., Chin H. M., Goeddel D. V., Schulz S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature. 1989 Mar 2;338(6210):78–83. doi: 10.1038/338078a0. [DOI] [PubMed] [Google Scholar]
  7. Crook R. B., Bazan N. G., Alvarado J. A., Polansky J. R. Histamine stimulation of inositol phosphate metabolism in cultured human non-pigmented ciliary epithelial cells. Curr Eye Res. 1989 Apr;8(4):415–422. doi: 10.3109/02713688908996389. [DOI] [PubMed] [Google Scholar]
  8. Delporte C., Winand J., Poloczek P., Von Geldern T., Christophe J. Discovery of a potent atrial natriuretic peptide antagonist for ANPA receptors in the human neuroblastoma NB-OK-1 cell line. Eur J Pharmacol. 1992 Dec 2;224(2-3):183–188. doi: 10.1016/0014-2999(92)90803-c. [DOI] [PubMed] [Google Scholar]
  9. Diestelhorst M., Krieglstein G. K. The intraocular pressure response of human atrial natriuretic factor in glaucoma. Int Ophthalmol. 1989 Jan;13(1-2):99–101. doi: 10.1007/BF02028647. [DOI] [PubMed] [Google Scholar]
  10. Flynn T. G., de Bold M. L., de Bold A. J. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun. 1983 Dec 28;117(3):859–865. doi: 10.1016/0006-291x(83)91675-3. [DOI] [PubMed] [Google Scholar]
  11. Fuller F., Porter J. G., Arfsten A. E., Miller J., Schilling J. W., Scarborough R. M., Lewicki J. A., Schenk D. B. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem. 1988 Jul 5;263(19):9395–9401. [PubMed] [Google Scholar]
  12. Ganong B. R., Loomis C. R., Hannun Y. A., Bell R. M. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1184–1188. doi: 10.1073/pnas.83.5.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirata M., Chang C. H., Murad F. Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells. Biochim Biophys Acta. 1989 Mar 6;1010(3):346–351. doi: 10.1016/0167-4889(89)90060-8. [DOI] [PubMed] [Google Scholar]
  14. Inagami T. Atrial natriuretic factor. J Biol Chem. 1989 Feb 25;264(6):3043–3046. [PubMed] [Google Scholar]
  15. Jaiswal R. K., Jaiswal N., Sharma R. K. Negative regulation of atrial natriuretic factor receptor coupled membrane guanylate cyclase by phorbol ester. Potential protein kinase C regulation of cyclic GMP signal in isolated adrenocortical carcinoma cells of rat. FEBS Lett. 1988 Jan 18;227(1):47–50. doi: 10.1016/0014-5793(88)81411-x. [DOI] [PubMed] [Google Scholar]
  16. Jewett J. R., Koller K. J., Goeddel D. V., Lowe D. G. Hormonal induction of low affinity receptor guanylyl cyclase. EMBO J. 1993 Feb;12(2):769–777. doi: 10.1002/j.1460-2075.1993.tb05711.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kikkawa U., Takai Y., Tanaka Y., Miyake R., Nishizuka Y. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem. 1983 Oct 10;258(19):11442–11445. [PubMed] [Google Scholar]
  18. Koh G. Y., Nussenzveig D. R., Okolicany J., Price D. A., Maack T. Dynamics of atrial natriuretic factor-guanylate cyclase receptors and receptor-ligand complexes in cultured glomerular mesangial and renomedullary interstitial cells. J Biol Chem. 1992 Jun 15;267(17):11987–11994. [PubMed] [Google Scholar]
  19. Kojima M., Minamino N., Kangawa K., Matsuo H. Cloning and sequence analysis of a cDNA encoding a precursor for rat C-type natriuretic peptide (CNP). FEBS Lett. 1990 Dec 10;276(1-2):209–213. doi: 10.1016/0014-5793(90)80544-s. [DOI] [PubMed] [Google Scholar]
  20. Koller K. J., Goeddel D. V. Molecular biology of the natriuretic peptides and their receptors. Circulation. 1992 Oct;86(4):1081–1088. doi: 10.1161/01.cir.86.4.1081. [DOI] [PubMed] [Google Scholar]
  21. Koller K. J., Lowe D. G., Bennett G. L., Minamino N., Kangawa K., Matsuo H., Goeddel D. V. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science. 1991 Apr 5;252(5002):120–123. doi: 10.1126/science.1672777. [DOI] [PubMed] [Google Scholar]
  22. Korenfeld M. S., Becker B. Atrial natriuretic peptides. Effects on intraocular pressure, cGMP, and aqueous flow. Invest Ophthalmol Vis Sci. 1989 Nov;30(11):2385–2392. [PubMed] [Google Scholar]
  23. Kreutter D., Caldwell A. B., Morin M. J. Dissociation of protein kinase C activation from phorbol ester-induced maturation of HL-60 leukemia cells. J Biol Chem. 1985 May 25;260(10):5979–5984. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Leitman D. C., Andresen J. W., Catalano R. M., Waldman S. A., Tuan J. J., Murad F. Atrial natriuretic peptide binding, cross-linking, and stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity in cultured cells. J Biol Chem. 1988 Mar 15;263(8):3720–3728. [PubMed] [Google Scholar]
  26. Lowe D. G., Camerato T. R., Goeddel D. V. cDNA sequence of the human atrial natriuretic peptide clearance receptor. Nucleic Acids Res. 1990 Jun 11;18(11):3412–3412. doi: 10.1093/nar/18.11.3412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maack T. Receptors of atrial natriuretic factor. Annu Rev Physiol. 1992;54:11–27. doi: 10.1146/annurev.ph.54.030192.000303. [DOI] [PubMed] [Google Scholar]
  28. Maack T., Suzuki M., Almeida F. A., Nussenzveig D., Scarborough R. M., McEnroe G. A., Lewicki J. A. Physiological role of silent receptors of atrial natriuretic factor. Science. 1987 Oct 30;238(4827):675–678. doi: 10.1126/science.2823385. [DOI] [PubMed] [Google Scholar]
  29. Minamino N., Makino Y., Tateyama H., Kangawa K., Matsuo H. Characterization of immunoreactive human C-type natriuretic peptide in brain and heart. Biochem Biophys Res Commun. 1991 Aug 30;179(1):535–542. doi: 10.1016/0006-291x(91)91404-z. [DOI] [PubMed] [Google Scholar]
  30. Mittag T. W., Tormay A., Ortega M., Severin C. Atrial natriuretic peptide (ANP), guanylate cyclase, and intraocular pressure in the rabbit eye. Curr Eye Res. 1987 Oct;6(10):1189–1196. doi: 10.3109/02713688709025228. [DOI] [PubMed] [Google Scholar]
  31. Mittag T. W., Tormay A., Ortega M., Severin C. Atrial natriuretic peptide (ANP), guanylate cyclase, and intraocular pressure in the rabbit eye. Curr Eye Res. 1987 Oct;6(10):1189–1196. doi: 10.3109/02713688709025228. [DOI] [PubMed] [Google Scholar]
  32. Morishita Y., Sano T., Kase H., Yamada K., Inagami T., Matsuda Y. HS-142-1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist, blocks ANP-induced renal responses through a specific interaction with guanylyl cyclase-linked receptors. Eur J Pharmacol. 1992 Mar 12;225(3):203–207. doi: 10.1016/0922-4106(92)90021-m. [DOI] [PubMed] [Google Scholar]
  33. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  34. Nathanson J. A. Atriopeptin-activated guanylate cyclase in the anterior segment. Identification, localization, and effects of atriopeptins on IOP. Invest Ophthalmol Vis Sci. 1987 Aug;28(8):1357–1364. [PubMed] [Google Scholar]
  35. Nussenzveig D. R., Lewicki J. A., Maack T. Cellular mechanisms of the clearance function of type C receptors of atrial natriuretic factor. J Biol Chem. 1990 Dec 5;265(34):20952–20958. [PubMed] [Google Scholar]
  36. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  37. Potter L. R., Garbers D. L. Protein kinase C-dependent desensitization of the atrial natriuretic peptide receptor is mediated by dephosphorylation. J Biol Chem. 1994 May 20;269(20):14636–14642. [PubMed] [Google Scholar]
  38. Samuelsson-Almén M., Nilsson S. F., Mäepea O., Bill A. Effects of atrial natriuretic factor (ANF) on intraocular pressure and aqueous humor flow in the cynomolgus monkey. Exp Eye Res. 1991 Aug;53(2):253–260. doi: 10.1016/0014-4835(91)90081-o. [DOI] [PubMed] [Google Scholar]
  39. Song D. L., Kohse K. P., Murad F. Brain natriuretic factor. Augmentation of cellular cyclic GMP, activation of particulate guanylate cyclase and receptor binding. FEBS Lett. 1988 May 9;232(1):125–129. doi: 10.1016/0014-5793(88)80400-9. [DOI] [PubMed] [Google Scholar]
  40. Sonnenberg J. L., Sakane Y., Jeng A. Y., Koehn J. A., Ansell J. A., Wennogle L. P., Ghai R. D. Identification of protease 3.4.24.11 as the major atrial natriuretic factor degrading enzyme in the rat kidney. Peptides. 1988 Jan-Feb;9(1):173–180. doi: 10.1016/0196-9781(88)90024-1. [DOI] [PubMed] [Google Scholar]
  41. Sudoh T., Kangawa K., Minamino N., Matsuo H. A new natriuretic peptide in porcine brain. Nature. 1988 Mar 3;332(6159):78–81. doi: 10.1038/332078a0. [DOI] [PubMed] [Google Scholar]
  42. Sudoh T., Minamino N., Kangawa K., Matsuo H. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun. 1990 Apr 30;168(2):863–870. doi: 10.1016/0006-291x(90)92401-k. [DOI] [PubMed] [Google Scholar]
  43. Suga S., Nakao K., Itoh H., Komatsu Y., Ogawa Y., Hama N., Imura H. Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of "vascular natriuretic peptide system". J Clin Invest. 1992 Sep;90(3):1145–1149. doi: 10.1172/JCI115933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Suga S., Nakao K., Kishimoto I., Hosoda K., Mukoyama M., Arai H., Shirakami G., Ogawa Y., Komatsu Y., Nakagawa O. Phenotype-related alteration in expression of natriuretic peptide receptors in aortic smooth muscle cells. Circ Res. 1992 Jul;71(1):34–39. doi: 10.1161/01.res.71.1.34. [DOI] [PubMed] [Google Scholar]
  45. Sugrue M. F., Viader M. P. Synthetic atrial natriuretic factor lowers rabbit intraocular pressure. Eur J Pharmacol. 1986 Nov 4;130(3):349–350. doi: 10.1016/0014-2999(86)90292-x. [DOI] [PubMed] [Google Scholar]
  46. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  47. Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
  48. Wolfensberger T. J., Singer D. R., Freegard T., Markandu N. D., Buckley M. G., MacGregor G. A. Evidence for a new role of natriuretic peptides: control of intraocular pressure. Br J Ophthalmol. 1994 Jun;78(6):446–448. doi: 10.1136/bjo.78.6.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zorad S., Tsutsumi K., Saavedra J. M. Selective localization of C atrial natriuretic peptide receptors in the rat brain. Brain Res. 1992 Jan 20;570(1-2):149–153. doi: 10.1016/0006-8993(92)90575-t. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES