Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):123–131. doi: 10.1042/bj3240123

Metabolic evidence for PtdIns(4,5)P2-directed phospholipase C in permeabilized plant protoplasts.

C A Brearley 1, P N Parmar 1, D E Hanke 1
PMCID: PMC1218408  PMID: 9164848

Abstract

Comparison of the sequences of the genes encoding phospholipase C (PLC) which have been cloned to date in plants with their mammalian counterparts suggests that plant PLC is similar to PLCdelta of mammalian cells. The physiological role and mechanism of activation of PLCdelta is unclear. It has recently been shown that Ins(1,4,5)P3 may not solely be the product of PtdIns(4,5)P2-directed PLC activity. Enzyme activities capable of producing Ins(1,4,5)P3 from endogenous inositol phosphates are present in Dictyostelium and also in rat liver. Significantly it has not been directly determined whether Ins(1,4,5)P3 present in higher plants is the product of a PtdIns(4, 5)P2-directed PLC activity. Therefore we have developed an experimental strategy for the identification of d-Ins(1,4,5)P3 in higher plants. By the use of a short-term non-equilibrium labelling strategy in permeabilized plant protoplasts, coupled to the use of a 'metabolic trap' to prevent degradation of [32P]Ins(1,4,5)P3, we were able to determine the distribution of 32P in individual phosphate esters of Ins(1,4,5)P3. The [32]Ins(1,4,5)P3 identified showed the same distribution of label in individual phosphate esters as that of [32P]PtdIns(4,5)P2 isolated from the same tissue. We thus provide in vivo evidence for the action of a PtdIns(4,5)P2-directed PLC activity in plant cells which is responsible for the production of Ins(1,4,5)P3 observed here. This observation does not, however, exclude the possibility that in other cells or under different conditions Ins(1,4,5)P3 can be generated by alternative routes.

Full Text

The Full Text of this article is available as a PDF (364.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker C. J., French P. J., Moore A. J., Nilsson T., Berggren P. O., Bunce C. M., Kirk C. J., Michell R. H. Inositol 1,2,3-trisphosphate and inositol 1,2- and/or 2,3-bisphosphate are normal constituents of mammalian cells. Biochem J. 1995 Mar 1;306(Pt 2):557–564. doi: 10.1042/bj3060557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Batty I. H., Downes C. P. The inhibition of phosphoinositide synthesis and muscarinic-receptor-mediated phospholipase C activity by Li+ as secondary, selective, consequences of inositol depletion in 1321N1 cells. Biochem J. 1994 Feb 1;297(Pt 3):529–537. doi: 10.1042/bj2970529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blatt M. R., Thiel G., Trentham D. R. Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature. 1990 Aug 23;346(6286):766–769. doi: 10.1038/346766a0. [DOI] [PubMed] [Google Scholar]
  4. Brearley C. A., Hanke D. E. Evidence for substrate-cycling of 3-, 3,4-, 4-, and 4,5-phosphorylated phosphatidylinositols in plants. Biochem J. 1995 Nov 1;311(Pt 3):1001–1007. doi: 10.1042/bj3111001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brearley C. A., Hanke D. E. Inositol phosphates in barley (Hordeum vulgare L.) aleurone tissue are stereochemically similar to the products of breakdown of InsP6 in vitro by wheat-bran phytase. Biochem J. 1996 Aug 15;318(Pt 1):279–286. doi: 10.1042/bj3180279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brearley C. A., Hanke D. E. Inositol phosphates in the duckweed Spirodela polyrhiza L. Biochem J. 1996 Feb 15;314(Pt 1):215–225. doi: 10.1042/bj3140215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brearley C. A., Hanke D. E. Metabolic evidence for the order of addition of individual phosphate esters in the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. Biochem J. 1996 Feb 15;314(Pt 1):227–233. doi: 10.1042/bj3140227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brearley C. A., Hanke D. E. Pathway of synthesis of 3,4- and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza L. Biochem J. 1993 Feb 15;290(Pt 1):145–150. doi: 10.1042/bj2900145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brearley C. A., Hanke D. E. Pathway of synthesis of 3,4- and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza L. Biochem J. 1993 Feb 15;290(Pt 1):145–150. doi: 10.1042/bj2900145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chilvers E. R., Batty I. H., Challiss R. A., Barnes P. J., Nahorski S. R. Determination of mass changes in phosphatidylinositol 4,5-bisphosphate and evidence for agonist-stimulated metabolism of inositol 1,4,5-trisphosphate in airway smooth muscle. Biochem J. 1991 Apr 15;275(Pt 2):373–379. doi: 10.1042/bj2750373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cho M. H., Tan Z., Erneux C., Shears S. B., Boss W. F. The effects of mastoparan on the carrot cell plasma membrane polyphosphoinositide phospholipase C. Plant Physiol. 1995 Mar;107(3):845–856. doi: 10.1104/pp.107.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Diehl R. E., Whiting P., Potter J., Gee N., Ragan C. I., Linemeyer D., Schoepfer R., Bennett C., Dixon R. A. Cloning and expression of bovine brain inositol monophosphatase. J Biol Chem. 1990 Apr 15;265(11):5946–5949. [PubMed] [Google Scholar]
  13. Drayer A. L., Van der Kaay J., Mayr G. W., Van Haastert P. J. Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J. 1994 Apr 1;13(7):1601–1609. doi: 10.1002/j.1460-2075.1994.tb06423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Drayer A. L., van Haastert P. J. Molecular cloning and expression of a phosphoinositide-specific phospholipase C of Dictyostelium discoideum. J Biol Chem. 1992 Sep 15;267(26):18387–18392. [PubMed] [Google Scholar]
  15. Drøbak B. K. The plant phosphoinositide system. Biochem J. 1992 Dec 15;288(Pt 3):697–712. doi: 10.1042/bj2880697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Drøbak B. K., Watkins P. A., Chattaway J. A., Roberts K., Dawson A. P. Metabolism of Inositol(1,4,5)trisphosphate by a Soluble Enzyme Fraction from Pea (Pisum sativum) Roots. Plant Physiol. 1991 Feb;95(2):412–419. doi: 10.1104/pp.95.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Drøbak B. K., Watkins P. A. Inositol(1,4,5)trisphosphate production in plant cells: stimulation by the venom peptides, melittin and mastoparan. Biochem Biophys Res Commun. 1994 Nov 30;205(1):739–745. doi: 10.1006/bbrc.1994.2727. [DOI] [PubMed] [Google Scholar]
  18. Gillaspy G. E., Keddie J. S., Oda K., Gruissem W. Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell. 1995 Dec;7(12):2175–2185. doi: 10.1105/tpc.7.12.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gilroy S., Read N. D., Trewavas A. J. Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature. 1990 Aug 23;346(6286):769–771. doi: 10.1038/346769a0. [DOI] [PubMed] [Google Scholar]
  20. Hallcher L. M., Sherman W. R. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem. 1980 Nov 25;255(22):10896–10901. [PubMed] [Google Scholar]
  21. Hawkins P. T., Michell R. H., Kirk C. J. Analysis of the metabolic turnover of the individual phosphate groups of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Validation of novel analytical techniques by using 32P-labelled lipids from erythrocytes. Biochem J. 1984 Mar 15;218(3):785–793. doi: 10.1042/bj2180785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hirayama T., Ohto C., Mizoguchi T., Shinozaki K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3903–3907. doi: 10.1073/pnas.92.9.3903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Irvine R. F., Letcher A. J., Stephens L. R., Musgrave A. Inositol polyphosphate metabolism and inositol lipids in a green alga, Chlamydomonas eugametos. Biochem J. 1992 Jan 1;281(Pt 1):261–266. doi: 10.1042/bj2810261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jenkinson S., Challiss R. A., Nahorski S. R. Evidence for lithium-sensitive inositol 4,5-bisphosphate accumulation in muscarinic cholinoceptor-stimulated cerebral-cortex slices. Biochem J. 1992 Oct 15;287(Pt 2):437–442. doi: 10.1042/bj2870437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Joseph S. K., Esch T., Bonner W. D., Jr Hydrolysis of inositol phosphates by plant cell extracts. Biochem J. 1989 Dec 15;264(3):851–856. doi: 10.1042/bj2640851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kim H. Y., Cote G. G., Crain R. C. Inositol 1,4,5-trisphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta. 1996 Feb;198(2):279–287. doi: 10.1007/BF00206254. [DOI] [PubMed] [Google Scholar]
  27. Lee S. B., Rhee S. G. Molecular cloning, splice variants, expression, and purification of phospholipase C-delta 4. J Biol Chem. 1996 Jan 5;271(1):25–31. doi: 10.1074/jbc.271.1.25. [DOI] [PubMed] [Google Scholar]
  28. Lee Y., Choi Y. B., Suh S., Lee J., Assmann S. M., Joe C. O., Kelleher J. F., Crain R. C. Abscisic Acid-Induced Phosphoinositide Turnover in Guard Cell Protoplasts of Vicia faba. Plant Physiol. 1996 Mar;110(3):987–996. doi: 10.1104/pp.110.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Legendre L., Yueh Y. G., Crain R., Haddock N., Heinstein P. F., Low P. S. Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem. 1993 Nov 25;268(33):24559–24563. [PubMed] [Google Scholar]
  30. Loomis-Husselbee J. W., Cullen P. J., Dreikausen U. E., Irvine R. F., Dawson A. P. Synergistic effects of inositol 1,3,4,5-tetrakisphosphate on inositol 2,4,5-triphosphate-stimulated Ca2+ release do not involve direct interaction of inositol 1,3,4,5-tetrakisphosphate with inositol triphosphate-binding sites. Biochem J. 1996 Mar 15;314(Pt 3):811–816. doi: 10.1042/bj3140811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Martinoia E., Locher R., Vogt E. Inositol Trisphosphate Metabolism in Subcellular Fractions of Barley (Hordeum vulgare L.) Mesophyll Cells. Plant Physiol. 1993 May;102(1):101–105. doi: 10.1104/pp.102.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Munnik T., Irvine R. F., Musgrave A. Rapid turnover of phosphatidylinositol 3-phosphate in the green alga Chlamydomonas eugametos: signs of a phosphatidylinositide 3-kinase signalling pathway in lower plants? Biochem J. 1994 Mar 1;298(Pt 2):269–273. doi: 10.1042/bj2980269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Phillippy B. Q., Ullah A. H., Ehrlich K. C. Purification and some properties of inositol 1,3,4,5,6-Pentakisphosphate 2-kinase from immature soybean seeds. J Biol Chem. 1994 Nov 11;269(45):28393–28399. [PubMed] [Google Scholar]
  34. Radenberg T., Scholz P., Bergmann G., Mayr G. W. The quantitative spectrum of inositol phosphate metabolites in avian erythrocytes, analysed by proton n.m.r. and h.p.l.c. with direct isomer detection. Biochem J. 1989 Dec 1;264(2):323–333. doi: 10.1042/bj2640323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rhee S. G., Choi K. D. Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem. 1992 Jun 25;267(18):12393–12396. [PubMed] [Google Scholar]
  36. Shears S. B. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J. 1989 Jun 1;260(2):313–324. doi: 10.1042/bj2600313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shi J., Gonzales R. A., Bhattacharyya M. K. Characterization of a plasma membrane-associated phosphoinositide-specific phospholipase C from soybean. Plant J. 1995 Sep;8(3):381–390. doi: 10.1046/j.1365-313x.1995.08030381.x. [DOI] [PubMed] [Google Scholar]
  38. Stephens L. R., Downes C. P. Product-precursor relationships amongst inositol polyphosphates. Incorporation of [32P]Pi into myo-inositol 1,3,4,6-tetrakisphosphate, myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 3,4,5,6-tetrakisphosphate and myo-inositol 1,3,4,5,6-pentakisphosphate in intact avian erythrocytes. Biochem J. 1990 Jan 15;265(2):435–452. doi: 10.1042/bj2650435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stephens L. R., Hawkins P. T., Downes C. P. An analysis of myo-[3H]inositol trisphosphates found in myo-[3H]inositol prelabelled avian erythrocytes. Biochem J. 1989 Sep 15;262(3):727–737. doi: 10.1042/bj2620727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stephens L. R., Hawkins P. T., Morris A. J., Downes P. C. L-myo-inositol 1,4,5,6-tetrakisphosphate (3-hydroxy)kinase. Biochem J. 1988 Jan 1;249(1):283–292. doi: 10.1042/bj2490283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stephens L. R., Hawkins P. T., Stanley A. F., Moore T., Poyner D. R., Morris P. J., Hanley M. R., Kay R. R., Irvine R. F. myo-inositol pentakisphosphates. Structure, biological occurrence and phosphorylation to myo-inositol hexakisphosphate. Biochem J. 1991 Apr 15;275(Pt 2):485–499. doi: 10.1042/bj2750485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stephens L. R., Hughes K. T., Irvine R. F. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature. 1991 May 2;351(6321):33–39. doi: 10.1038/351033a0. [DOI] [PubMed] [Google Scholar]
  43. Stephens L. R., Irvine R. F. Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium. Nature. 1990 Aug 9;346(6284):580–583. doi: 10.1038/346580a0. [DOI] [PubMed] [Google Scholar]
  44. Stephens L., Jackson T. R., Hawkins P. T. Activation of phosphatidylinositol 4,5-bisphosphate supply by agonists and non-hydrolysable GTP analogues. Biochem J. 1993 Dec 1;296(Pt 2):481–488. doi: 10.1042/bj2960481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stephens L., Jackson T., Hawkins P. T. Synthesis of phosphatidylinositol 3,4,5-trisphosphate in permeabilized neutrophils regulated by receptors and G-proteins. J Biol Chem. 1993 Aug 15;268(23):17162–17172. [PubMed] [Google Scholar]
  46. Van Dijken P., Bergsma J. C., Hiemstra H. S., De Vries B., Van Der Kaay J., Van Haastert P. J. Dictyostelium discoideum contains three inositol monophosphatase activities with different substrate specificities and sensitivities to lithium. Biochem J. 1996 Mar 1;314(Pt 2):491–495. doi: 10.1042/bj3140491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wreggett K. A., Irvine R. F. Automated isocratic high-performance liquid chromatography of inositol phosphate isomers. Biochem J. 1989 Sep 15;262(3):997–1000. doi: 10.1042/bj2620997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yamamoto Y. T., Conkling M. A., Sussex I. M., Irish V. F. An Arabidopsis cDNA related to animal phosphoinositide-specific phospholipase C genes. Plant Physiol. 1995 Mar;107(3):1029–1030. doi: 10.1104/pp.107.3.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES