Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):151–157. doi: 10.1042/bj3240151

Identification of membrane dipeptidase as a major glycosyl-phosphatidylinositol-anchored protein of the pancreatic zymogen granule membrane, and evidence for its release by phospholipase A.

N M Hooper 1, S Cook 1, J Lainé 1, D Lebel 1
PMCID: PMC1218411  PMID: 9164851

Abstract

Membrane dipeptidase (EC 3.4.13.19) enzyme activity that is inhibited by cilastatin has been detected in pancreatic zymogen granule membranes of human, porcine and rat origin. Immunoelectrophoretic blot analysis of human and porcine pancreatic zymogen granule membranes with polyclonal antisera raised against the corresponding kidney membrane dipeptidase revealed that the enzyme is a disulphide-linked homodimer of subunit mass 61 kDa in the human and 45 kDa in the pig. Although membrane dipeptidase was, along with glycoprotein-2, one of the only two major components of carbonate high pH-washed membranes, no enzyme activity or immunoreactivity was detected in the zymogen granule contents. Digestion with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), and subsequent recognition by antibodies specific for the cross-reacting determinant, revealed that membrane dipeptidase in human and porcine pancreatic zymogen granule membranes is glycosyl-phosphatidylinositol-anchored. Membrane dipeptidase was released from the pancreatic zymogen granule membranes by an endogenous hydrolase, and the released form migrated as a disulphide-linked dimer on SDS/PAGE under non-reducing conditions. Under reducing conditions it migrated with the same apparent molecular mass as the membrane-bound form, and was still a substrate for bacterial PI-PLC. Treatment of kidney microvillar membranes with phospholipase A2 resulted in the release of membrane dipeptidase in a form that demonstrated electrophoretic and cilastatin-Sepharose binding properties identical to those of the endogenously released form of the enzyme from zymogen granule membranes. These results indicate that the glycosyl-phosphatidylinositol anchor on the pancreatic membrane dipeptidase is cleaved by an endogenous hydrolase, probably a phospholipase A, and that this cleavage may promote the release of the protein from the membrane.

Full Text

The Full Text of this article is available as a PDF (254.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi H., Ishida N., Tsujimoto M. Primary structure of rat renal dipeptidase and expression of its mRNA in rat tissues and COS-1 cells. Biochim Biophys Acta. 1992 Oct 20;1132(3):311–314. doi: 10.1016/0167-4781(92)90167-x. [DOI] [PubMed] [Google Scholar]
  2. Armstrong D. J., Mukhopadhyay S. K., Campbell B. J. Physicochemical characterization of renal dipeptidase. Biochemistry. 1974 Apr 9;13(8):1745–1750. doi: 10.1021/bi00705a029. [DOI] [PubMed] [Google Scholar]
  3. Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  5. Brewis I. A., Ferguson M. A., Mehlert A., Turner A. J., Hooper N. M. Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J Biol Chem. 1995 Sep 29;270(39):22946–22956. doi: 10.1074/jbc.270.39.22946. [DOI] [PubMed] [Google Scholar]
  6. Brewis I. A., Turner A. J., Hooper N. M. Activation of the glycosyl-phosphatidylinositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C. Biochem J. 1994 Oct 15;303(Pt 2):633–638. doi: 10.1042/bj3030633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Broomfield S. J., Hooper N. M. Characterization of an antibody to the cross-reacting determinant of the glycosyl-phosphatidylinositol anchor of human membrane dipeptidase. Biochim Biophys Acta. 1993 Feb 9;1145(2):212–218. doi: 10.1016/0005-2736(93)90291-7. [DOI] [PubMed] [Google Scholar]
  8. Campbell B. J., Baker S. F., Shukla S. D., Forrester L. J., Zahler W. L. Bioconversion of leukotriene D4 by lung dipeptidase. Biochim Biophys Acta. 1990 Jan 16;1042(1):107–112. doi: 10.1016/0005-2760(90)90063-4. [DOI] [PubMed] [Google Scholar]
  9. Cardoso de Almeida M. L., Turner M. J. The membrane form of variant surface glycoproteins of Trypanosoma brucei. Nature. 1983 Mar 24;302(5906):349–352. doi: 10.1038/302349a0. [DOI] [PubMed] [Google Scholar]
  10. Corring T., Aumaitre A., Rérat A. Fistulation permanente du pancréas exocrine chez le porc. Application: réponse de la sécrétion pancréatique au repas. Ann Biol Anim Biochim Biophys. 1972;12(1):109–124. [PubMed] [Google Scholar]
  11. Doery H. M., Magnusson B. J., Gulasekharam J., Pearson J. E. The properties of phospholipase enzymes in staphylococcal toxins. J Gen Microbiol. 1965 Aug;40(2):283–296. doi: 10.1099/00221287-40-2-283. [DOI] [PubMed] [Google Scholar]
  12. Ferguson M. A., Haldar K., Cross G. A. Trypanosoma brucei variant surface glycoprotein has a sn-1,2-dimyristyl glycerol membrane anchor at its COOH terminus. J Biol Chem. 1985 Apr 25;260(8):4963–4968. [PubMed] [Google Scholar]
  13. Fritz B. A., Lowe A. W. Polarized GP2 secretion in MDCK cells via GPI targeting and apical membrane-restricted proteolysis. Am J Physiol. 1996 Jan;270(1 Pt 1):G176–G183. doi: 10.1152/ajpgi.1996.270.1.G176. [DOI] [PubMed] [Google Scholar]
  14. Fukuoka S., Freedman S. D., Scheele G. A. A single gene encodes membrane-bound and free forms of GP-2, the major glycoprotein in pancreatic secretory (zymogen) granule membranes. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2898–2902. doi: 10.1073/pnas.88.7.2898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guther M. L., de Almeida M. L., Rosenberry T. L., Ferguson M. A. The detection of phospholipase-resistant and -sensitive glycosyl-phosphatidylinositol membrane anchors by western blotting. Anal Biochem. 1994 Jun;219(2):249–255. doi: 10.1006/abio.1994.1264. [DOI] [PubMed] [Google Scholar]
  16. Hooper N. M., Broomfield S. J., Turner A. J. Characterization of antibodies to the glycosyl-phosphatidylinositol membrane anchors of mammalian proteins. Biochem J. 1991 Jan 15;273(Pt 2):301–306. doi: 10.1042/bj2730301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hooper N. M., Keen J. N., Turner A. J. Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipeptidase reveals that it is more extensively glycosylated than the pig enzyme. Biochem J. 1990 Jan 15;265(2):429–433. doi: 10.1042/bj2650429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hooper N. M., Low M. G., Turner A. J. Renal dipeptidase is one of the membrane proteins released by phosphatidylinositol-specific phospholipase C. Biochem J. 1987 Jun 1;244(2):465–469. doi: 10.1042/bj2440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Aminopeptidase P is anchored by a glycosyl-phosphatidylinositol moiety. FEBS Lett. 1988 Mar 14;229(2):340–344. doi: 10.1016/0014-5793(88)81152-9. [DOI] [PubMed] [Google Scholar]
  20. Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Isolation and characterization of the amphipathic form of renal dipeptidase and hydrolysis of its glycosyl-phosphatidylinositol anchor by an activity in plasma. Biochem J. 1989 Aug 1;261(3):811–818. doi: 10.1042/bj2610811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hooper N. M., Turner A. J. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J. 1987 Feb 1;241(3):625–633. doi: 10.1042/bj2410625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hoops T. C., Rindler M. J. Isolation of the cDNA encoding glycoprotein-2 (GP-2), the major zymogen granule membrane protein. Homology to uromodulin/Tamm-Horsfall protein. J Biol Chem. 1991 Mar 5;266(7):4257–4263. [PubMed] [Google Scholar]
  23. Ito Y., Iwaki M., Ogiso T., Nakamura S., Kato K., Sawaki S. Inhibition of hydrolytic activities of human dipeptidases toward leukotriene D4 and kyotorphin by captopril. Clin Exp Hypertens A. 1987;9(2-3):681–685. doi: 10.3109/10641968709164242. [DOI] [PubMed] [Google Scholar]
  24. Ito Y., Sugiura M., Sawaki S. Purification and properties of human pancreas dipeptidase. J Biochem. 1983 Sep;94(3):871–877. doi: 10.1093/oxfordjournals.jbchem.a134430. [DOI] [PubMed] [Google Scholar]
  25. Kahan F. M., Kropp H., Sundelof J. G., Birnbaum J. Thienamycin: development of imipenen-cilastatin. J Antimicrob Chemother. 1983 Dec;12 (Suppl 500):1–35. doi: 10.1093/jac/12.suppl_d.1. [DOI] [PubMed] [Google Scholar]
  26. Keynan S., Habgood N. T., Hooper N. M., Turner A. J. Site-directed mutagenesis of conserved cysteine residues in porcine membrane dipeptidase. Cys 361 alone is involved in disulfide-linked dimerization. Biochemistry. 1996 Sep 24;35(38):12511–12517. doi: 10.1021/bi961193z. [DOI] [PubMed] [Google Scholar]
  27. Kozak E. M., Tate S. S. Glutathione-degrading enzymes of microvillus membranes. J Biol Chem. 1982 Jun 10;257(11):6322–6327. [PubMed] [Google Scholar]
  28. Kropp H., Sundelof J. G., Hajdu R., Kahan F. M. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase. Antimicrob Agents Chemother. 1982 Jul;22(1):62–70. doi: 10.1128/aac.22.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. LeBel D., Beattie M. The integral and peripheral proteins of the zymogen granule membrane. Biochim Biophys Acta. 1984 Feb 15;769(3):611–621. doi: 10.1016/0005-2736(84)90060-9. [DOI] [PubMed] [Google Scholar]
  30. LeBel D., Beattie M. The major protein of pancreatic zymogen granule membranes (GP-2) is anchored via covalent bonds to phosphatidylinositol. Biochem Biophys Res Commun. 1988 Jul 29;154(2):818–823. doi: 10.1016/0006-291x(88)90213-6. [DOI] [PubMed] [Google Scholar]
  31. Leblond F. A., Viau G., Lainé J., Lebel D. Reconstitution in vitro of the pH-dependent aggregation of pancreatic zymogens en route to the secretory granule: implication of GP-2. Biochem J. 1993 Apr 1;291(Pt 1):289–296. doi: 10.1042/bj2910289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Littlewood G. M., Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Affinity purification, characterization and localization of the phospholipase C-solubilized form of renal dipeptidase. Biochem J. 1989 Jan 15;257(2):361–367. doi: 10.1042/bj2570361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Matsas R., Fulcher I. S., Kenny A. J., Turner A. J. Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci U S A. 1983 May;80(10):3111–3115. doi: 10.1073/pnas.80.10.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McConville M. J., Bacic A., Mitchell G. F., Handman E. Lipophosphoglycan of Leishmania major that vaccinates against cutaneous leishmaniasis contains an alkylglycerophosphoinositol lipid anchor. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8941–8945. doi: 10.1073/pnas.84.24.8941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Orlandi P. A., Jr, Turco S. J. Structure of the lipid moiety of the Leishmania donovani lipophosphoglycan. J Biol Chem. 1987 Jul 25;262(21):10384–10391. [PubMed] [Google Scholar]
  36. Paquette J., Leblond F. A., Beattie M., LeBel D. Reducing conditions induce a total degradation of the major zymogen granule membrane protein in both its membranous and its soluble form. Immunochemical quantitation of the two forms. Biochem Cell Biol. 1986 May;64(5):456–462. doi: 10.1139/o86-064. [DOI] [PubMed] [Google Scholar]
  37. Paul E., Hurtubise Y., LeBel D. Purification and characterization of the apical plasma membrane of the rat pancreatic acinar cell. J Membr Biol. 1992 Apr;127(2):129–137. doi: 10.1007/BF00233285. [DOI] [PubMed] [Google Scholar]
  38. Rached E., Hooper N. M., James P., Semenza G., Turner A. J., Mantei N. cDNA cloning and expression in Xenopus laevis oocytes of pig renal dipeptidase, a glycosyl-phosphatidylinositol-anchored ectoenzyme. Biochem J. 1990 Nov 1;271(3):755–760. doi: 10.1042/bj2710755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Relton J. M., Gee N. S., Matsas R., Turner A. J., Kenny A. J. Purification of endopeptidase-24.11 ('enkephalinase') from pig brain by immunoadsorbent chromatography. Biochem J. 1983 Dec 1;215(3):519–523. doi: 10.1042/bj2150519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  41. Stahl N., Borchelt D. R., Hsiao K., Prusiner S. B. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell. 1987 Oct 23;51(2):229–240. doi: 10.1016/0092-8674(87)90150-4. [DOI] [PubMed] [Google Scholar]
  42. Taguchi R., Asahi Y., Ikezawa H. Purification and properties of phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Biochim Biophys Acta. 1980 Jul 14;619(1):48–57. [PubMed] [Google Scholar]
  43. Tieku S., Hooper N. M. Inhibition of aminopeptidases N, A and W. A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme. Biochem Pharmacol. 1992 Nov 3;44(9):1725–1730. doi: 10.1016/0006-2952(92)90065-Q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Viau G., Lainé J., Levenez F., Gueugneau A. M., Corring T., Morisset J., Lebel D. Evidence for an apical, nonregulated protein secretion in pig exocrine pancreas. Am J Physiol. 1994 Nov;267(5 Pt 1):G764–G771. doi: 10.1152/ajpgi.1994.267.5.G764. [DOI] [PubMed] [Google Scholar]
  45. Wagner A. C., Wishart M. J., Mulders S. M., Blevins P. M., Andrews P. C., Lowe A. W., Williams J. A. GP-3, a newly characterized glycoprotein on the inner surface of the zymogen granule membrane, undergoes regulated secretion. J Biol Chem. 1994 Mar 25;269(12):9099–9104. [PubMed] [Google Scholar]
  46. Wishart M. J., Andrews P. C., Nichols R., Blevins G. T., Jr, Logsdon C. D., Williams J. A. Identification and cloning of GP-3 from rat pancreatic acinar zymogen granules as a glycosylated membrane-associated lipase. J Biol Chem. 1993 May 15;268(14):10303–10311. [PubMed] [Google Scholar]
  47. Withiam-Leitch M., Aletta J. M., Koshlukova S. E., Rupp G., Beaudoin A. R., Rubin R. P. Glycoprotein 2 of zymogen granule membranes shares immunological cross-reactivity and sequence similarity with phospholipase A2. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1167–1174. doi: 10.1006/bbrc.1993.1945. [DOI] [PubMed] [Google Scholar]
  48. Withiam-Leitch M., Rubin R. P., Koshlukova S. E., Aletta J. M. Identification and characterization of carboxyl ester hydrolase as a phospholipid hydrolyzing enzyme of zymogen granule membranes from rat exocrine pancreas. J Biol Chem. 1995 Feb 24;270(8):3780–3787. doi: 10.1074/jbc.270.8.3780. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES