Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):193–200. doi: 10.1042/bj3240193

Rat hepatic glutaminase: identification of the full coding sequence and characterization of a functional promoter.

M I Chung-Bok 1, N Vincent 1, U Jhala 1, M Watford 1
PMCID: PMC1218416  PMID: 9164856

Abstract

Glutamine catabolism in mammalian liver is catalysed by a unique isoenzyme of phosphate-activated glutaminase. The full coding and 5' untranslated sequence for rat hepatic glutaminase was isolated by screening lambda ZAP cDNA libraries and a Charon 4a rat genomic library. The sequence produces a mRNA 2225 nt in length, encoding a polypeptide of 535 amino acid residues with a calculated molecular mass of 59.2 kDa. The deduced amino acid sequence of rat liver glutaminase shows 86% similarity to that of rat kidney glutaminase and 65% similarity to a putative glutaminase from Caenorhabditis elegans. A genomic clone to rat liver glutaminase was isolated that contains 3.5 kb of the gene and 7.5 kb of the 5' flanking region. The 1 kb immediately upstream of the hepatic glutaminase gene (from -1022 to +48) showed functional promoter activity in HepG2 hepatoma cells. This promoter region did not respond to treatment with cAMP, but was highly responsive (10-fold stimulation) to the synthetic glucocorticoid dexamethasone. Subsequent 5' deletion analysis indicated that the promoter region between -103 and +48 was sufficient for basal promoter activity. This region does not contain an identifiable TATA element, indicating that transcription of the glutaminase gene is driven by a TATA-less promoter. The region responsive to glucocorticoids was mapped to -252 to -103 relative to the transcription start site.

Full Text

The Full Text of this article is available as a PDF (888.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Christ B., Nath A., Jungermann K. Interactions of nuclear protein from cultured rat hepatocytes with the cyclic AMP responsive elements and the NF1-CTF site in the promoter of the rat phosphoenolpyruvate carboxykinase gene. Biochem Biophys Res Commun. 1991 Nov 27;181(1):367–374. doi: 10.1016/s0006-291x(05)81428-7. [DOI] [PubMed] [Google Scholar]
  2. Curthoys N. P., Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15:133–159. doi: 10.1146/annurev.nu.15.070195.001025. [DOI] [PubMed] [Google Scholar]
  3. Diamond M. I., Miner J. N., Yoshinaga S. K., Yamamoto K. R. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990 Sep 14;249(4974):1266–1272. doi: 10.1126/science.2119054. [DOI] [PubMed] [Google Scholar]
  4. Engelhardt J. F., Steel G., Valle D. Transcriptional analysis of the human ornithine aminotransferase promoter. J Biol Chem. 1991 Jan 15;266(2):752–758. [PubMed] [Google Scholar]
  5. Forest C. D., O'Brien R. M., Lucas P. C., Magnuson M. A., Granner D. K. Regulation of phosphoenolpyruvate carboxykinase gene expression by insulin. Use of the stable transfection approach to locate an insulin responsive sequence. Mol Endocrinol. 1990 Sep;4(9):1302–1310. doi: 10.1210/mend-4-9-1302. [DOI] [PubMed] [Google Scholar]
  6. Friedman J. E., Yun J. S., Patel Y. M., McGrane M. M., Hanson R. W. Glucocorticoids regulate the induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes. J Biol Chem. 1993 Jun 15;268(17):12952–12957. [PubMed] [Google Scholar]
  7. Hall R. K., Sladek F. M., Granner D. K. The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):412–416. doi: 10.1073/pnas.92.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hwang J. J., Perera S., Shapiro R. A., Curthoys N. P. Mechanism of altered renal glutaminase gene expression in response to chronic acidosis. Biochemistry. 1991 Jul 30;30(30):7522–7526. doi: 10.1021/bi00244a022. [DOI] [PubMed] [Google Scholar]
  9. Imai E., Stromstedt P. E., Quinn P. G., Carlstedt-Duke J., Gustafsson J. A., Granner D. K. Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1990 Sep;10(9):4712–4719. doi: 10.1128/mcb.10.9.4712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kovacevic Z., McGivan J. D. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev. 1983 Apr;63(2):547–605. doi: 10.1152/physrev.1983.63.2.547. [DOI] [PubMed] [Google Scholar]
  11. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liu J. S., Park E. A., Gurney A. L., Roesler W. J., Hanson R. W. Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements. J Biol Chem. 1991 Oct 5;266(28):19095–19102. [PubMed] [Google Scholar]
  13. Lucas P. C., Granner D. K. Hormone response domains in gene transcription. Annu Rev Biochem. 1992;61:1131–1173. doi: 10.1146/annurev.bi.61.070192.005411. [DOI] [PubMed] [Google Scholar]
  14. McGivan J. D., Boon K., Doyle F. A. Glucagon and ammonia influence the long-term regulation of phosphate-dependent glutaminase activity in primary cultures of rat hepatocytes. Biochem J. 1991 Feb 15;274(Pt 1):103–108. doi: 10.1042/bj2740103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meijer A. J. Channeling of ammonia from glutaminase to carbamoyl-phosphate synthetase in liver mitochondria. FEBS Lett. 1985 Oct 28;191(2):249–251. doi: 10.1016/0014-5793(85)80018-1. [DOI] [PubMed] [Google Scholar]
  16. Meijer A. J., Lamers W. H., Chamuleau R. A. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990 Jul;70(3):701–748. doi: 10.1152/physrev.1990.70.3.701. [DOI] [PubMed] [Google Scholar]
  17. Mitchell J., Noisin E., Hall R., O'Brien R., Imai E., Granner D. Integration of multiple signals through a complex hormone response unit in the phosphoenolpyruvate carboxykinase gene promoter. Mol Endocrinol. 1994 May;8(5):585–594. doi: 10.1210/mend.8.5.8058068. [DOI] [PubMed] [Google Scholar]
  18. Moorman A. F., de Boer P. A., Watford M., Dingemanse M. A., Lamers W. H. Hepatic glutaminase mRNA is confined to part of the urea cycle domain in the adult rodent liver lobule. FEBS Lett. 1994 Dec 12;356(1):76–80. doi: 10.1016/0014-5793(94)01230-x. [DOI] [PubMed] [Google Scholar]
  19. Morris S. M., Jr Regulation of enzymes of urea and arginine synthesis. Annu Rev Nutr. 1992;12:81–101. doi: 10.1146/annurev.nu.12.070192.000501. [DOI] [PubMed] [Google Scholar]
  20. Nitsch D., Boshart M., Schütz G. Activation of the tyrosine aminotransferase gene is dependent on synergy between liver-specific and hormone-responsive elements. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5479–5483. doi: 10.1073/pnas.90.12.5479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nurjhan N., Bucci A., Perriello G., Stumvoll M., Dailey G., Bier D. M., Toft I., Jenssen T. G., Gerich J. E. Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J Clin Invest. 1995 Jan;95(1):272–277. doi: 10.1172/JCI117651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. O'Brien R. M., Granner D. K. Regulation of gene expression by insulin. Biochem J. 1991 Sep 15;278(Pt 3):609–619. doi: 10.1042/bj2780609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Park E. A., Gurney A. L., Nizielski S. E., Hakimi P., Cao Z., Moorman A., Hanson R. W. Relative roles of CCAAT/enhancer-binding protein beta and cAMP regulatory element-binding protein in controlling transcription of the gene for phosphoenolpyruvate carboxykinase (GTP). J Biol Chem. 1993 Jan 5;268(1):613–619. [PubMed] [Google Scholar]
  24. Patel Y. M., Yun J. S., Liu J., McGrane M. M., Hanson R. W. An analysis of regulatory elements in the phosphoenolpyruvate carboxykinase (GTP) gene which are responsible for its tissue-specific expression and metabolic control in transgenic mice. J Biol Chem. 1994 Feb 25;269(8):5619–5628. [PubMed] [Google Scholar]
  25. Quinn P. G., Wong T. W., Magnuson M. A., Shabb J. B., Granner D. K. Identification of basal and cyclic AMP regulatory elements in the promoter of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1988 Aug;8(8):3467–3475. doi: 10.1128/mcb.8.8.3467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ribeiro A., Brown A., Lee K. A. An in vivo assay for members of the cAMP response element-binding protein family of transcription factors. J Biol Chem. 1994 Dec 9;269(49):31124–31128. [PubMed] [Google Scholar]
  27. Ribeiro R. C., Kushner P. J., Baxter J. D. The nuclear hormone receptor gene superfamily. Annu Rev Med. 1995;46:443–453. doi: 10.1146/annurev.med.46.1.443. [DOI] [PubMed] [Google Scholar]
  28. Rigaud G., Roux J., Pictet R., Grange T. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell. 1991 Nov 29;67(5):977–986. doi: 10.1016/0092-8674(91)90370-e. [DOI] [PubMed] [Google Scholar]
  29. Roesler W. J., Graham J. G., Kolen R., Klemm D. J., McFie P. J. The cAMP response element binding protein synergizes with other transcription factors to mediate cAMP responsiveness. J Biol Chem. 1995 Apr 7;270(14):8225–8232. doi: 10.1074/jbc.270.14.8225. [DOI] [PubMed] [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shapiro R. A., Farrell L., Srinivasan M., Curthoys N. P. Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J Biol Chem. 1991 Oct 5;266(28):18792–18796. [PubMed] [Google Scholar]
  32. Smith E. M., Watford M. Molecular cloning of a cDNA for rat hepatic glutaminase. Sequence similarity to kidney-type glutaminase. J Biol Chem. 1990 Jun 25;265(18):10631–10636. [PubMed] [Google Scholar]
  33. Smith E. M., Watford M. Rat hepatic glutaminase: purification and immunochemical characterization. Arch Biochem Biophys. 1988 Feb 1;260(2):740–751. doi: 10.1016/0003-9861(88)90504-8. [DOI] [PubMed] [Google Scholar]
  34. Snodgrass P. J., Lund P. Allosteric properties of phosphate-activated glutaminase of human liver mitochondria. Biochim Biophys Acta. 1984 Mar 22;798(1):21–27. doi: 10.1016/0304-4165(84)90005-9. [DOI] [PubMed] [Google Scholar]
  35. Takiguchi M., Mori M. Transcriptional regulation of genes for ornithine cycle enzymes. Biochem J. 1995 Dec 15;312(Pt 3):649–659. doi: 10.1042/bj3120649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vincent N., Martin G., Baverel G. Simultaneous synthesis and degradation of glutamine in isolated rat liver cells. Effect of vasopressin. Biochim Biophys Acta. 1989 Nov 20;1014(2):184–188. doi: 10.1016/0167-4889(89)90032-3. [DOI] [PubMed] [Google Scholar]
  37. Watford M. Hepatic glutaminase expression: relationship to kidney-type glutaminase and to the urea cycle. FASEB J. 1993 Dec;7(15):1468–1474. doi: 10.1096/fasebj.7.15.8262331. [DOI] [PubMed] [Google Scholar]
  38. Watford M., Smith E. M. Distribution of hepatic glutaminase activity and mRNA in perivenous and periportal rat hepatocytes. Biochem J. 1990 Apr 1;267(1):265–267. doi: 10.1042/bj2670265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Watford M., Smith E. M., Erbelding E. J. The regulation of phosphate-activated glutaminase activity and glutamine metabolism in the streptozotocin-diabetic rat. Biochem J. 1984 Nov 15;224(1):207–214. doi: 10.1042/bj2240207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Watford M. The urea cycle: a two-compartment system. Essays Biochem. 1991;26:49–58. [PubMed] [Google Scholar]
  41. Watford M., Vincent N., Zhan Z., Fannelli J., Kowalski T., Kovacevic Z. Transcriptional control of rat hepatic glutaminase expression by dietary protein level and starvation. J Nutr. 1994 Apr;124(4):493–499. doi: 10.1093/jn/124.4.493. [DOI] [PubMed] [Google Scholar]
  42. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
  43. Zalkin H. The amidotransferases. Adv Enzymol Relat Areas Mol Biol. 1993;66:203–309. doi: 10.1002/9780470123126.ch5. [DOI] [PubMed] [Google Scholar]
  44. Zhan Z., Vincent N. C., Watford M. Transcriptional regulation of the hepatic glutaminase gene in the streptozotocin-diabetic rat. Int J Biochem. 1994 Feb;26(2):263–268. doi: 10.1016/0020-711x(94)90155-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES