Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):231–236. doi: 10.1042/bj3240231

Prolactin stimulates the JAK2 and focal adhesion kinase pathways in human breast carcinoma T47-D cells.

E Canbay 1, M Norman 1, E Kilic 1, V Goffin 1, I Zachary 1
PMCID: PMC1218421  PMID: 9164861

Abstract

Treatment of T47-D human breast carcinoma cells with recombinant prolactin (rhPRL) induced a concentration- and time-dependent increase in the phosphotyrosine content of JAK2. rhPRL also stimulated JAK2 tyrosine phosphorylation more weakly in three other breast carcinoma lines, MCF-7, ZR-75-1 and MDA-MB-231. Furthermore it stimulated tyrosine phosphorylation of two isoforms of the transcriptional activator STAT5, STAT5a and STAT5b. Surprisingly, rhPRL treatment of T47-D cells also stimulated tyrosine phosphorylation of focal adhesion kinase (FAK), as determined by immunoprecipitation with anti-phosphotyrosine antibody followed by immunoblotting with a specific FAK antibody. The effect of rhPRL was rapid and concentration-dependent, being maximal at 5 ng/ml. At rhPRL concentrations above 25 ng/ml, FAK tyrosine phosphorylation declined but remained above control levels at 100 ng/ml. rhPRL also stimulated paxillin tyrosine phosphorylation in T47-D cells with similar concentration- and time-dependence. In a second human breast carcinoma cell line, MCF-7, rhPRL produced very similar effects on FAK and paxillin tyrosine phosphorylation. These findings identify a new protein tyrosine kinase pathway in the action of the lactogenic hormone rhPRL and represent the first report that a hormone acting through a member of the haemopoietin receptor superfamily can regulate the FAK/paxillin pathway.

Full Text

The Full Text of this article is available as a PDF (285.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abedi H., Dawes K. E., Zachary I. Differential effects of platelet-derived growth factor BB on p125 focal adhesion kinase and paxillin tyrosine phosphorylation and on cell migration in rabbit aortic vascular smooth muscle cells and Swiss 3T3 fibroblasts. J Biol Chem. 1995 May 12;270(19):11367–11376. doi: 10.1074/jbc.270.19.11367. [DOI] [PubMed] [Google Scholar]
  2. Abedi H., Zachary I. Signalling mechanisms in the regulation of vascular cell migration. Cardiovasc Res. 1995 Oct;30(4):544–556. [PubMed] [Google Scholar]
  3. Bazan J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6934–6938. doi: 10.1073/pnas.87.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biswas R., Vonderhaar B. K. Role of serum in the prolactin responsiveness of MCF-7 human breast cancer cells in long-term tissue culture. Cancer Res. 1987 Jul 1;47(13):3509–3514. [PubMed] [Google Scholar]
  5. Burridge K., Turner C. E., Romer L. H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol. 1992 Nov;119(4):893–903. doi: 10.1083/jcb.119.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calalb M. B., Polte T. R., Hanks S. K. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol. 1995 Feb;15(2):954–963. doi: 10.1128/mcb.15.2.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell G. S., Argetsinger L. S., Ihle J. N., Kelly P. A., Rillema J. A., Carter-Su C. Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5232–5236. doi: 10.1073/pnas.91.12.5232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clevenger C. V., Medaglia M. V. The protein tyrosine kinase P59fyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Mol Endocrinol. 1994 Jun;8(6):674–681. doi: 10.1210/mend.8.6.7935483. [DOI] [PubMed] [Google Scholar]
  9. Clevenger C. V., Torigoe T., Reed J. C. Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line. J Biol Chem. 1994 Feb 25;269(8):5559–5565. [PubMed] [Google Scholar]
  10. Cobb B. S., Schaller M. D., Leu T. H., Parsons J. T. Stable association of pp60src and pp59fyn with the focal adhesion-associated protein tyrosine kinase, pp125FAK. Mol Cell Biol. 1994 Jan;14(1):147–155. doi: 10.1128/mcb.14.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. David M., Petricoin E. F., 3rd, Igarashi K., Feldman G. M., Finbloom D. S., Larner A. C. Prolactin activates the interferon-regulated p91 transcription factor and the Jak2 kinase by tyrosine phosphorylation. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7174–7178. doi: 10.1073/pnas.91.15.7174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dusanter-Fourt I., Muller O., Ziemiecki A., Mayeux P., Drucker B., Djiane J., Wilks A., Harpur A. G., Fischer S., Gisselbrecht S. Identification of JAK protein tyrosine kinases as signaling molecules for prolactin. Functional analysis of prolactin receptor and prolactin-erythropoietin receptor chimera expressed in lymphoid cells. EMBO J. 1994 Jun 1;13(11):2583–2591. doi: 10.1002/j.1460-2075.1994.tb06548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Erwin R. A., Kirken R. A., Malabarba M. G., Farrar W. L., Rui H. Prolactin activates Ras via signaling proteins SHC, growth factor receptor bound 2, and son of sevenless. Endocrinology. 1995 Aug;136(8):3512–3518. doi: 10.1210/endo.136.8.7628388. [DOI] [PubMed] [Google Scholar]
  14. Gouilleux F., Pallard C., Dusanter-Fourt I., Wakao H., Haldosen L. A., Norstedt G., Levy D., Groner B. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J. 1995 May 1;14(9):2005–2013. doi: 10.1002/j.1460-2075.1995.tb07192.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gout P. W., Beer C. T., Noble R. L. Prolactin-stimulated growth of cell cultures established from malignant Nb rat lymphomas. Cancer Res. 1980 Jul;40(7):2433–2436. [PubMed] [Google Scholar]
  16. Guan J. L., Shalloway D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature. 1992 Aug 20;358(6388):690–692. doi: 10.1038/358690a0. [DOI] [PubMed] [Google Scholar]
  17. Hall C. L., Wang C., Lange L. A., Turley E. A. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol. 1994 Jul;126(2):575–588. doi: 10.1083/jcb.126.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hanks S. K., Calalb M. B., Harper M. C., Patel S. K. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8487–8491. doi: 10.1073/pnas.89.18.8487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hildebrand J. D., Schaller M. D., Parsons J. T. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J Cell Biol. 1993 Nov;123(4):993–1005. doi: 10.1083/jcb.123.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ilić D., Furuta Y., Kanazawa S., Takeda N., Sobue K., Nakatsuji N., Nomura S., Fujimoto J., Okada M., Yamamoto T. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 1995 Oct 12;377(6549):539–544. doi: 10.1038/377539a0. [DOI] [PubMed] [Google Scholar]
  21. Kanner S. B., Reynolds A. B., Vines R. R., Parsons J. T. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci U S A. 1990 May;87(9):3328–3332. doi: 10.1073/pnas.87.9.3328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kelly P. A., Djiane J., Postel-Vinay M. C., Edery M. The prolactin/growth hormone receptor family. Endocr Rev. 1991 Aug;12(3):235–251. doi: 10.1210/edrv-12-3-235. [DOI] [PubMed] [Google Scholar]
  23. Kornberg L., Earp H. S., Parsons J. T., Schaller M., Juliano R. L. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem. 1992 Nov 25;267(33):23439–23442. [PubMed] [Google Scholar]
  24. Lebrun J. J., Ali S., Sofer L., Ullrich A., Kelly P. A. Prolactin-induced proliferation of Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J Biol Chem. 1994 May 13;269(19):14021–14026. [PubMed] [Google Scholar]
  25. Lebrun J. J., Ali S., Ullrich A., Kelly P. A. Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. J Biol Chem. 1995 May 5;270(18):10664–10670. doi: 10.1074/jbc.270.18.10664. [DOI] [PubMed] [Google Scholar]
  26. Manni A., Wright C., Davis G., Glenn J., Joehl R., Feil P. Promotion by prolactin of the growth of human breast neoplasms cultured in vitro in the soft agar clonogenic assay. Cancer Res. 1986 Apr;46(4 Pt 1):1669–1672. [PubMed] [Google Scholar]
  27. Ogasawara M., Sirbasku D. A. A new serum-free method of measuring growth factor activities for human breast cancer cells in culture. In Vitro Cell Dev Biol. 1988 Sep;24(9):911–920. doi: 10.1007/BF02623902. [DOI] [PubMed] [Google Scholar]
  28. Owens L. V., Xu L., Craven R. J., Dent G. A., Weiner T. M., Kornberg L., Liu E. T., Cance W. G. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995 Jul 1;55(13):2752–2755. [PubMed] [Google Scholar]
  29. Pallard C., Gouilleux F., Charon M., Groner B., Gisselbrecht S., Dusanter-Fourt I. Interleukin-3, erythropoietin, and prolactin activate a STAT5-like factor in lymphoid cells. J Biol Chem. 1995 Jul 7;270(27):15942–15945. doi: 10.1074/jbc.270.27.15942. [DOI] [PubMed] [Google Scholar]
  30. Paris N., Rentier-Delrue F., Defontaine A., Goffin V., Lebrun J. J., Mercier L., Martial J. A. Bacterial production and purification of recombinant human prolactin. Biotechnol Appl Biochem. 1990 Aug;12(4):436–449. [PubMed] [Google Scholar]
  31. Rankin S., Rozengurt E. Platelet-derived growth factor modulation of focal adhesion kinase (p125FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells. Bell-shaped dose response and cross-talk with bombesin. J Biol Chem. 1994 Jan 7;269(1):704–710. [PubMed] [Google Scholar]
  32. Salacinski P. R., McLean C., Sykes J. E., Clement-Jones V. V., Lowry P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem. 1981 Oct;117(1):136–146. doi: 10.1016/0003-2697(81)90703-x. [DOI] [PubMed] [Google Scholar]
  33. Schaller M. D., Hildebrand J. D., Shannon J. D., Fox J. W., Vines R. R., Parsons J. T. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994 Mar;14(3):1680–1688. doi: 10.1128/mcb.14.3.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schaller M. D., Parsons J. T. Focal adhesion kinase and associated proteins. Curr Opin Cell Biol. 1994 Oct;6(5):705–710. doi: 10.1016/0955-0674(94)90097-3. [DOI] [PubMed] [Google Scholar]
  35. Schmidhauser C., Bissell M. J., Myers C. A., Casperson G. F. Extracellular matrix and hormones transcriptionally regulate bovine beta-casein 5' sequences in stably transfected mouse mammary cells. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9118–9122. doi: 10.1073/pnas.87.23.9118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shiu R. P., Paterson J. A. Alteration of cell shape, adhesion, and lipid accumulation in human breast cancer cells (T-47D) by human prolactin and growth hormone. Cancer Res. 1984 Mar;44(3):1178–1186. [PubMed] [Google Scholar]
  37. Shiu R. P. Prolactin receptors in human breast cancer cells in long-term tissue culture. Cancer Res. 1979 Nov;39(11):4381–4386. [PubMed] [Google Scholar]
  38. Silva C. M., Lu H., Day R. N. Characterization and cloning of STAT5 from IM-9 cells and its activation by growth hormone. Mol Endocrinol. 1996 May;10(5):508–518. doi: 10.1210/mend.10.5.8732682. [DOI] [PubMed] [Google Scholar]
  39. Sinnett-Smith J., Zachary I., Valverde A. M., Rozengurt E. Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. Role of protein kinase C, Ca2+ mobilization, and the actin cytoskeleton. J Biol Chem. 1993 Jul 5;268(19):14261–14268. [PubMed] [Google Scholar]
  40. Streuli C. H., Edwards G. M., Delcommenne M., Whitelaw C. B., Burdon T. G., Schindler C., Watson C. J. Stat5 as a target for regulation by extracellular matrix. J Biol Chem. 1995 Sep 15;270(37):21639–21644. doi: 10.1074/jbc.270.37.21639. [DOI] [PubMed] [Google Scholar]
  41. Streuli C. H., Schmidhauser C., Bailey N., Yurchenco P., Skubitz A. P., Roskelley C., Bissell M. J. Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol. 1995 May;129(3):591–603. doi: 10.1083/jcb.129.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tachibana K., Sato T., D'Avirro N., Morimoto C. Direct association of pp125FAK with paxillin, the focal adhesion-targeting mechanism of pp125FAK. J Exp Med. 1995 Oct 1;182(4):1089–1099. doi: 10.1084/jem.182.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Turner C. E., Schaller M. D., Parsons J. T. Tyrosine phosphorylation of the focal adhesion kinase pp125FAK during development: relation to paxillin. J Cell Sci. 1993 Jul;105(Pt 3):637–645. doi: 10.1242/jcs.105.3.637. [DOI] [PubMed] [Google Scholar]
  44. Waters M. J., Daniel N., Bignon C., Djiane J. The rabbit mammary gland prolactin receptor is tyrosine-phosphorylated in response to prolactin in vivo and in vitro. J Biol Chem. 1995 Mar 10;270(10):5136–5143. doi: 10.1074/jbc.270.10.5136. [DOI] [PubMed] [Google Scholar]
  45. Waxman D. J., Ram P. A., Park S. H., Choi H. K. Intermittent plasma growth hormone triggers tyrosine phosphorylation and nuclear translocation of a liver-expressed, Stat 5-related DNA binding protein. Proposed role as an intracellular regulator of male-specific liver gene transcription. J Biol Chem. 1995 Jun 2;270(22):13262–13270. doi: 10.1074/jbc.270.22.13262. [DOI] [PubMed] [Google Scholar]
  46. Weiner T. M., Liu E. T., Craven R. J., Cance W. G. Expression of focal adhesion kinase gene and invasive cancer. Lancet. 1993 Oct 23;342(8878):1024–1025. doi: 10.1016/0140-6736(93)92881-s. [DOI] [PubMed] [Google Scholar]
  47. Zachary I., Rozengurt E. Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell. 1992 Dec 11;71(6):891–894. doi: 10.1016/0092-8674(92)90385-p. [DOI] [PubMed] [Google Scholar]
  48. Zachary I., Sinnett-Smith J., Rozengurt E. Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. Identification of a novel tyrosine kinase as a major substrate. J Biol Chem. 1992 Sep 25;267(27):19031–19034. [PubMed] [Google Scholar]
  49. Zachary I., Sinnett-Smith J., Turner C. E., Rozengurt E. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation of the focal adhesion-associated protein paxillin in Swiss 3T3 cells. J Biol Chem. 1993 Oct 15;268(29):22060–22065. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES