Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):289–294. doi: 10.1042/bj3240289

Tissue-specific regulation of medium-chain acyl-CoA dehydrogenase gene by thyroid hormones in the developing rat.

F Djouadi 1, B Riveau 1, C Merlet-Benichou 1, J Bastin 1
PMCID: PMC1218429  PMID: 9164869

Abstract

During development, gene expression of medium-chain acyl-CoA dehydrogenase (MCAD), a nuclear-encoded mitochondrial enzyme that catalyses the first step of medium-chain fatty acid beta-oxidation, is highly regulated in tissues in accordance with fatty acid utilization, but the factors involved in this regulation are largely unknown. To investigate a possible role of thyroid hormones, rat pups were made hypothyroid by the administration of propylthiouracyl to the mother from day 12 of gestation, and their kidneys, heart and liver were removed on postnatal day 16 to determine MCAD mRNA abundance, protein level and enzyme activity. Similar experiments were run in 3,3',5-tri-iodothyronine (T3)-replaced hypothyroid (1 microg of T3/100 g body weight from postnatal day 5 to 15) and euthyroid pups. Hypothyroidism led to an increase in MCAD mRNA abundance in kidney and a decrease in abundance in heart, but had no effect in liver. The protein levels and enzyme activity were lowered in hypothyroid heart and kidney, suggesting that hypothyroidism affects post-transcriptional steps of gene expression in the kidney. All the effects of hypothyroidism were completely reversed in both heart and kidney by T3 replacement. Injection of a single T3 dose into 16-day-old euthyroid rats also led to tissue-specific changes in mRNA abundance. Nuclear run-on assays performed from hypothyroid and hypothyroid plus T3 rats showed that T3 stimulates MCAD gene transcription in heart and represses it in the kidney. These results indicate that the postnatal rise in circulating T3 is essential to the developmental regulation of the MCAD gene in vivo.

Full Text

The Full Text of this article is available as a PDF (298.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Carter M. E., Gulick T., Moore D. D., Kelly D. P. A pleiotropic element in the medium-chain acyl coenzyme A dehydrogenase gene promoter mediates transcriptional regulation by multiple nuclear receptor transcription factors and defines novel receptor-DNA binding motifs. Mol Cell Biol. 1994 Jul;14(7):4360–4372. doi: 10.1128/mcb.14.7.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carter M. E., Gulick T., Raisher B. D., Caira T., Ladias J. A., Moore D. D., Kelly D. P. Hepatocyte nuclear factor-4 activates medium chain acyl-CoA dehydrogenase gene transcription by interacting with a complex regulatory element. J Biol Chem. 1993 Jul 5;268(19):13805–13810. [PubMed] [Google Scholar]
  4. Chen J. D., Umesono K., Evans R. M. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7567–7571. doi: 10.1073/pnas.93.15.7567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Djouadi F., Bastin J., Kelly D. P., Merlet-Benichou C. Transcriptional regulation by glucocorticoids of mitochondrial oxidative enzyme genes in the developing rat kidney. Biochem J. 1996 Apr 15;315(Pt 2):555–562. doi: 10.1042/bj3150555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hainline B. E., Kahlenbeck D. J., Grant J., Strauss A. W. Tissue specific and developmental expression of rat long-and medium-chain acyl-CoA dehydrogenases. Biochim Biophys Acta. 1993 Dec 14;1216(3):460–468. doi: 10.1016/0167-4781(93)90015-6. [DOI] [PubMed] [Google Scholar]
  8. Henning S. J. Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol. 1981 Sep;241(3):G199–G214. doi: 10.1152/ajpgi.1981.241.3.G199. [DOI] [PubMed] [Google Scholar]
  9. Hörlein A. J., När A. M., Heinzel T., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Söderström M., Glass C. K. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995 Oct 5;377(6548):397–404. doi: 10.1038/377397a0. [DOI] [PubMed] [Google Scholar]
  10. Ikeda Y., Okamura-Ikeda K., Tanaka K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J Biol Chem. 1985 Jan 25;260(2):1311–1325. [PubMed] [Google Scholar]
  11. Izquierdo J. M., Cuezva J. M. Thyroid hormones promote transcriptional activation of the nuclear gene coding for mitochondrial beta-F1-ATPase in rat liver. FEBS Lett. 1993 May 24;323(1-2):109–112. doi: 10.1016/0014-5793(93)81459-d. [DOI] [PubMed] [Google Scholar]
  12. Izquierdo J. M., Jiménez E., Cuezva J. M. Hypothyroidism affects the expression of the beta-F1-ATPase gene and limits mitochondrial proliferation in rat liver at all stages of development. Eur J Biochem. 1995 Sep 1;232(2):344–350. doi: 10.1111/j.1432-1033.1995.344zz.x. [DOI] [PubMed] [Google Scholar]
  13. Izquierdo J. M., Luis A. M., Cuezva J. M. Postnatal mitochondrial differentiation in rat liver. Regulation by thyroid hormones of the beta-subunit of the mitochondrial F1-ATPase complex. J Biol Chem. 1990 Jun 5;265(16):9090–9097. [PubMed] [Google Scholar]
  14. Kelly D. P., Gordon J. I., Alpers R., Strauss A. W. The tissue-specific expression and developmental regulation of two nuclear genes encoding rat mitochondrial proteins. Medium chain acyl-CoA dehydrogenase and mitochondrial malate dehydrogenase. J Biol Chem. 1989 Nov 15;264(32):18921–18925. [PubMed] [Google Scholar]
  15. Kelly D. P., Kim J. J., Billadello J. J., Hainline B. E., Chu T. W., Strauss A. W. Nucleotide sequence of medium-chain acyl-CoA dehydrogenase mRNA and its expression in enzyme-deficient human tissue. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4068–4072. doi: 10.1073/pnas.84.12.4068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lazar M. A. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993 Apr;14(2):184–193. doi: 10.1210/edrv-14-2-184. [DOI] [PubMed] [Google Scholar]
  18. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  19. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nagao M., Parimoo B., Tanaka K. Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and alpha-subunit of electron transfer flavoprotein in rat. J Biol Chem. 1993 Nov 15;268(32):24114–24124. [PubMed] [Google Scholar]
  21. Pegorier J. P., Leturque A., Ferre P., Turlan P., Girard J. Effects of medium-chain triglyceride feeding on glucose homeostasis in the newborn rat. Am J Physiol. 1983 Apr;244(4):E329–E334. doi: 10.1152/ajpendo.1983.244.4.E329. [DOI] [PubMed] [Google Scholar]
  22. Raisher B. D., Gulick T., Zhang Z., Strauss A. W., Moore D. D., Kelly D. P. Identification of a novel retinoid-responsive element in the promoter region of the medium chain acyl-coenzyme A dehydrogenase gene. J Biol Chem. 1992 Oct 5;267(28):20264–20269. [PubMed] [Google Scholar]
  23. Sande S., Privalsky M. L. Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol Endocrinol. 1996 Jul;10(7):813–825. doi: 10.1210/mend.10.7.8813722. [DOI] [PubMed] [Google Scholar]
  24. Schmitt C. A., McDonough A. A. Developmental and thyroid hormone regulation of two molecular forms of Na+-K+-ATPase in brain. J Biol Chem. 1986 Aug 5;261(22):10439–10444. [PubMed] [Google Scholar]
  25. Soboll S. Thyroid hormone action on mitochondrial energy transfer. Biochim Biophys Acta. 1993 Aug 16;1144(1):1–16. doi: 10.1016/0005-2728(93)90024-a. [DOI] [PubMed] [Google Scholar]
  26. Tanaka K., Yokota I., Coates P. M., Strauss A. W., Kelly D. P., Zhang Z., Gregersen N., Andresen B. S., Matsubara Y., Curtis D. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene. Hum Mutat. 1992;1(4):271–279. doi: 10.1002/humu.1380010402. [DOI] [PubMed] [Google Scholar]
  27. Veerkamp J. H., Van Moerkerk H. T. The fatty acid-binding protein content and fatty acid oxidation capacity of rat tissues. Prog Clin Biol Res. 1992;375:205–210. [PubMed] [Google Scholar]
  28. Vega-Núez E., Menéndez-Hurtado A., Garesse R., Santos A., Perez-Castillo A. Thyroid hormone-regulated brain mitochondrial genes revealed by differential cDNA cloning. J Clin Invest. 1995 Aug;96(2):893–899. doi: 10.1172/JCI118136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Velasquez O. R., Place A. R., Tso P., Crissinger K. D. Developing intestine is injured during absorption of oleic acid but not its ethyl ester. J Clin Invest. 1994 Feb;93(2):479–485. doi: 10.1172/JCI116996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vockley J. The changing face of disorders of fatty acid oxidation. Mayo Clin Proc. 1994 Mar;69(3):249–257. doi: 10.1016/s0025-6196(12)61064-7. [DOI] [PubMed] [Google Scholar]
  31. Wijkhuisen A., Djouadi F., Vilar J., Merlet-Benichou C., Bastin J. Thyroid hormones regulate development of energy metabolism enzymes in rat proximal convoluted tubule. Am J Physiol. 1995 Apr;268(4 Pt 2):F634–F642. doi: 10.1152/ajprenal.1995.268.4.F634. [DOI] [PubMed] [Google Scholar]
  32. Zhang Z. F., Kelly D. P., Kim J. J., Zhou Y. Q., Ogden M. L., Whelan A. J., Strauss A. W. Structural organization and regulatory regions of the human medium-chain acyl-CoA dehydrogenase gene. Biochemistry. 1992 Jan 14;31(1):81–89. doi: 10.1021/bi00116a013. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES