Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 May 15;324(Pt 1):311–319. doi: 10.1042/bj3240311

Differential modulation of cell adhesion by interaction between adhesive and counter-adhesive proteins: characterization of the binding of vitronectin to osteonectin (BM40, SPARC).

S Rosenblatt 1, J A Bassuk 1, C E Alpers 1, E H Sage 1, R Timpl 1, K T Preissner 1
PMCID: PMC1218432  PMID: 9164872

Abstract

Heparin-binding forms of vitronectin, a multifunctional adhesive glycoprotein, are associated with the extracellular matrix (ECM) at different locations in the body and serve to promote cell adhesion and the regulation of pericellular proteolysis at sites of angiogenesis. In the present study we characterized the interactions of vitronectin with the counter-adhesive protein osteonectin (also termed SPARC or BM40). Osteonectin and vitronectin were both found associated with the ECM of cultured endothelial cells and were localized in vessel wall sections of kidney tissue. In vitro, the heparin-binding multimeric isoform of vitronectin bound to immobilized osteonectin in a saturable manner with half-maximal binding at 30-40 nM. Preincubation of plasma vitronectin with plasminogen activator inhibitor 1 (PAI-1), which provoked multimer formation, induced the binding of vitronectin to osteonectin. Binding was optimal at physiological ionic strength, and binary complexes were stabilized by tissue transglutaminase-mediated cross-linking. In a concentration-dependent fashion, PAI-1, CaCl2, heparin and heparan sulphate, but not other glycosaminoglycans, interfered with the binding of vitronectin to osteonectin. Using vitronectin-derived synthetic peptides as well as mutant forms of recombinant osteonectin, we found that the heparin-binding region of vitronectin interacted with the C-terminal region of osteonectin that contains a high-affinity Ca2+-binding site with counter-adhesive properties. Adhesion of cultured endothelial cells was partly abrogated by osteonectin and was correspondingly reversed by vitronectin in a concentration-dependent manner. These results indicate that specific interactions between vitronectin and osteonectin modulate cell adhesion and might thereby regulate endothelial cell function during angiogenesis.

Full Text

The Full Text of this article is available as a PDF (534.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassuk J. A., Baneyx F., Vernon R. B., Funk S. E., Sage E. H. Expression of biologically active human SPARC in Escherichia coli. Arch Biochem Biophys. 1996 Jan 1;325(1):8–19. doi: 10.1006/abbi.1996.0002. [DOI] [PubMed] [Google Scholar]
  2. Bassuk J. A., Braun L. P., Motamed K., Baneyx F., Sage E. H. Renaturation of SPARC expressed in Escherichia coli requires isomerization of disulfide bonds for recovery of biological activity. Int J Biochem Cell Biol. 1996 Sep;28(9):1031–1043. doi: 10.1016/1357-2725(96)00036-2. [DOI] [PubMed] [Google Scholar]
  3. Bornstein P. Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol. 1995 Aug;130(3):503–506. doi: 10.1083/jcb.130.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casaroli Marano R. P., Preissner K. T., Vilaró S. Fibronectin, laminin, vitronectin and their receptors at newly-formed capillaries in proliferative diabetic retinopathy. Exp Eye Res. 1995 Jan;60(1):5–17. doi: 10.1016/s0014-4835(05)80079-x. [DOI] [PubMed] [Google Scholar]
  5. Ciambrone G. J., McKeown-Longo P. J. Plasminogen activator inhibitor type I stabilizes vitronectin-dependent adhesions in HT-1080 cells. J Cell Biol. 1990 Nov;111(5 Pt 1):2183–2195. doi: 10.1083/jcb.111.5.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Declerck P. J., De Mol M., Alessi M. C., Baudner S., Pâques E. P., Preissner K. T., Müller-Berghaus G., Collen D. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J Biol Chem. 1988 Oct 25;263(30):15454–15461. [PubMed] [Google Scholar]
  7. Gebb C., Hayman E. G., Engvall E., Ruoslahti E. Interaction of vitronectin with collagen. J Biol Chem. 1986 Dec 15;261(35):16698–16703. [PubMed] [Google Scholar]
  8. Hess S., Kanse S. M., Kost C., Preissner K. T. The versatility of adhesion receptor ligands in haemostasis: morpho-regulatory functions of vitronectin. Thromb Haemost. 1995 Jul;74(1):258–265. [PubMed] [Google Scholar]
  9. Hohenester E., Maurer P., Hohenadl C., Timpl R., Jansonius J. N., Engel J. Structure of a novel extracellular Ca(2+)-binding module in BM-40. Nat Struct Biol. 1996 Jan;3(1):67–73. doi: 10.1038/nsb0196-67. [DOI] [PubMed] [Google Scholar]
  10. Iruela-Arispe M. L., Lane T. F., Redmond D., Reilly M., Bolender R. P., Kavanagh T. J., Sage E. H. Expression of SPARC during development of the chicken chorioallantoic membrane: evidence for regulated proteolysis in vivo. Mol Biol Cell. 1995 Mar;6(3):327–343. doi: 10.1091/mbc.6.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kanse S. M., Kost C., Wilhelm O. G., Andreasen P. A., Preissner K. T. The urokinase receptor is a major vitronectin-binding protein on endothelial cells. Exp Cell Res. 1996 May 1;224(2):344–353. doi: 10.1006/excr.1996.0144. [DOI] [PubMed] [Google Scholar]
  12. Kelm R. J., Jr, Swords N. A., Orfeo T., Mann K. G. Osteonectin in matrix remodeling. A plasminogen-osteonectin-collagen complex. J Biol Chem. 1994 Dec 2;269(48):30147–30153. [PubMed] [Google Scholar]
  13. Kost C., Stüber W., Ehrlich H. J., Pannekoek H., Preissner K. T. Mapping of binding sites for heparin, plasminogen activator inhibitor-1, and plasminogen to vitronectin's heparin-binding region reveals a novel vitronectin-dependent feedback mechanism for the control of plasmin formation. J Biol Chem. 1992 Jun 15;267(17):12098–12105. [PubMed] [Google Scholar]
  14. Lane T. F., Iruela-Arispe M. L., Johnson R. S., Sage E. H. SPARC is a source of copper-binding peptides that stimulate angiogenesis. J Cell Biol. 1994 May;125(4):929–943. doi: 10.1083/jcb.125.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lane T. F., Sage E. H. Functional mapping of SPARC: peptides from two distinct Ca+(+)-binding sites modulate cell shape. J Cell Biol. 1990 Dec;111(6 Pt 2):3065–3076. doi: 10.1083/jcb.111.6.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lane T. F., Sage E. H. The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J. 1994 Feb;8(2):163–173. [PubMed] [Google Scholar]
  17. Lin C. Q., Bissell M. J. Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J. 1993 Jun;7(9):737–743. doi: 10.1096/fasebj.7.9.8330681. [DOI] [PubMed] [Google Scholar]
  18. Maurer P., Hohenadl C., Hohenester E., Göhring W., Timpl R., Engel J. The C-terminal portion of BM-40 (SPARC/osteonectin) is an autonomously folding and crystallisable domain that binds calcium and collagen IV. J Mol Biol. 1995 Oct 20;253(2):347–357. doi: 10.1006/jmbi.1995.0557. [DOI] [PubMed] [Google Scholar]
  19. Maurer P., Mayer U., Bruch M., Jenö P., Mann K., Landwehr R., Engel J., Timpl R. High-affinity and low-affinity calcium binding and stability of the multidomain extracellular 40-kDa basement membrane glycoprotein (BM-40/SPARC/osteonectin). Eur J Biochem. 1992 Apr 1;205(1):233–240. doi: 10.1111/j.1432-1033.1992.tb16773.x. [DOI] [PubMed] [Google Scholar]
  20. Mayer U., Aumailley M., Mann K., Timpl R., Engel J. Calcium-dependent binding of basement membrane protein BM-40 (osteonectin, SPARC) to basement membrane collagen type IV. Eur J Biochem. 1991 May 23;198(1):141–150. doi: 10.1111/j.1432-1033.1991.tb15996.x. [DOI] [PubMed] [Google Scholar]
  21. Mimuro J., Loskutoff D. J. Purification of a protein from bovine plasma that binds to type 1 plasminogen activator inhibitor and prevents its interaction with extracellular matrix. Evidence that the protein is vitronectin. J Biol Chem. 1989 Jan 15;264(2):936–939. [PubMed] [Google Scholar]
  22. Mimuro J., Loskutoff D. J. Purification of a protein from bovine plasma that binds to type 1 plasminogen activator inhibitor and prevents its interaction with extracellular matrix. Evidence that the protein is vitronectin. J Biol Chem. 1989 Jan 15;264(2):936–939. [PubMed] [Google Scholar]
  23. Murphy-Ullrich J. E., Gurusiddappa S., Frazier W. A., Hök M. Heparin-binding peptides from thrombospondins 1 and 2 contain focal adhesion-labilizing activity. J Biol Chem. 1993 Dec 15;268(35):26784–26789. [PubMed] [Google Scholar]
  24. Murphy-Ullrich J. E., Lane T. F., Pallero M. A., Sage E. H. SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca(2+)-binding EF-hand. J Cell Biochem. 1995 Feb;57(2):341–350. doi: 10.1002/jcb.240570218. [DOI] [PubMed] [Google Scholar]
  25. Nischt R., Pottgiesser J., Krieg T., Mayer U., Aumailley M., Timpl R. Recombinant expression and properties of the human calcium-binding extracellular matrix protein BM-40. Eur J Biochem. 1991 Sep 1;200(2):529–536. doi: 10.1111/j.1432-1033.1991.tb16214.x. [DOI] [PubMed] [Google Scholar]
  26. Pottgiesser J., Maurer P., Mayer U., Nischt R., Mann K., Timpl R., Krieg T., Engel J. Changes in calcium and collagen IV binding caused by mutations in the EF hand and other domains of extracellular matrix protein BM-40 (SPARC, osteonectin). J Mol Biol. 1994 May 13;238(4):563–574. doi: 10.1006/jmbi.1994.1315. [DOI] [PubMed] [Google Scholar]
  27. Preissner K. T., Grulich-Henn J., Ehrlich H. J., Declerck P., Justus C., Collen D., Pannekoek H., Müller-Berghaus G. Structural requirements for the extracellular interaction of plasminogen activator inhibitor 1 with endothelial cell matrix-associated vitronectin. J Biol Chem. 1990 Oct 25;265(30):18490–18498. [PubMed] [Google Scholar]
  28. Preissner K. T., Holzhüter S., Justus C., Müller-Berghaus G. Identification of and partial characterization of platelet vitronectin: evidence for complex formation with platelet-derived plasminogen activator inhibitor-1. Blood. 1989 Nov 1;74(6):1989–1996. [PubMed] [Google Scholar]
  29. Preissner K. T. Structure and biological role of vitronectin. Annu Rev Cell Biol. 1991;7:275–310. doi: 10.1146/annurev.cb.07.110191.001423. [DOI] [PubMed] [Google Scholar]
  30. Preissner K. T., Wassmuth R., Müller-Berghaus G. Physicochemical characterization of human S-protein and its function in the blood coagulation system. Biochem J. 1985 Oct 15;231(2):349–355. doi: 10.1042/bj2310349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Raghow R. The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J. 1994 Aug;8(11):823–831. doi: 10.1096/fasebj.8.11.8070631. [DOI] [PubMed] [Google Scholar]
  32. Sage H., Johnson C., Bornstein P. Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J Biol Chem. 1984 Mar 25;259(6):3993–4007. [PubMed] [Google Scholar]
  33. Sage H., Vernon R. B., Decker J., Funk S., Iruela-Arispe M. L. Distribution of the calcium-binding protein SPARC in tissues of embryonic and adult mice. J Histochem Cytochem. 1989 Jun;37(6):819–829. doi: 10.1177/37.6.2723400. [DOI] [PubMed] [Google Scholar]
  34. Sage H., Vernon R. B., Funk S. E., Everitt E. A., Angello J. SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca+2-dependent binding to the extracellular matrix. J Cell Biol. 1989 Jul;109(1):341–356. doi: 10.1083/jcb.109.1.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sancho E., Tonge D. W., Hockney R. C., Booth N. A. Purification and characterization of active and stable recombinant plasminogen-activator inhibitor accumulated at high levels in Escherichia coli. Eur J Biochem. 1994 Aug 15;224(1):125–134. doi: 10.1111/j.1432-1033.1994.tb20003.x. [DOI] [PubMed] [Google Scholar]
  36. Seiffert D., Ciambrone G., Wagner N. V., Binder B. R., Loskutoff D. J. The somatomedin B domain of vitronectin. Structural requirements for the binding and stabilization of active type 1 plasminogen activator inhibitor. J Biol Chem. 1994 Jan 28;269(4):2659–2666. [PubMed] [Google Scholar]
  37. Senger D. R. Molecular framework for angiogenesis: a complex web of interactions between extravasated plasma proteins and endothelial cell proteins induced by angiogenic cytokines. Am J Pathol. 1996 Jul;149(1):1–7. [PMC free article] [PubMed] [Google Scholar]
  38. Stockmann A., Hess S., Declerck P., Timpl R., Preissner K. T. Multimeric vitronectin. Identification and characterization of conformation-dependent self-association of the adhesive protein. J Biol Chem. 1993 Oct 25;268(30):22874–22882. [PubMed] [Google Scholar]
  39. Tomasini B. R., Mosher D. F. Vitronectin. Prog Hemost Thromb. 1991;10:269–305. [PubMed] [Google Scholar]
  40. Völker W., Hess S., Vischer P., Preissner K. T. Binding and processing of multimeric vitronectin by vascular endothelial cells. J Histochem Cytochem. 1993 Dec;41(12):1823–1832. doi: 10.1177/41.12.7504009. [DOI] [PubMed] [Google Scholar]
  41. Yost J. C., Sage E. H. Specific interaction of SPARC with endothelial cells is mediated through a carboxyl-terminal sequence containing a calcium-binding EF hand. J Biol Chem. 1993 Dec 5;268(34):25790–25796. [PubMed] [Google Scholar]
  42. de Boer H. C., Preissner K. T., Bouma B. N., de Groot P. G. Internalization of vitronectin-thrombin-antithrombin complex by endothelial cells leads to deposition of the complex into the subendothelial matrix. J Biol Chem. 1995 Dec 22;270(51):30733–30740. doi: 10.1074/jbc.270.51.30733. [DOI] [PubMed] [Google Scholar]
  43. van Meijer M., Gebbink R. K., Preissner K. T., Pannekoek H. Determination of the vitronectin binding site on plasminogen activator inhibitor 1 (PAI-1). FEBS Lett. 1994 Oct 3;352(3):342–346. doi: 10.1016/0014-5793(94)00990-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES