Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 1;324(Pt 2):371–377. doi: 10.1042/bj3240371

Synthesis and properties of the very-low-density-lipoprotein receptor and a comparison with the low-density-lipoprotein receptor.

D D Patel 1, R A Forder 1, A K Soutar 1, B L Knight 1
PMCID: PMC1218441  PMID: 9182693

Abstract

The properties of the very-low-density lipoprotein (VLDL) receptor have been studied in Chinese hamster ovary (CHO) cells stably transfected with human VLDL-receptor cDNA and compared with those of the low-density lipoprotein (LDL) receptor expressed under the same conditions. Immunoblotting showed that the cells produced a mature VLDL receptor protein, of apparent Mr 123000 on non-reduced and 158000 on reduced gels, that was less extensively glycosylated than the LDL receptor. The VLDL receptor was more slowly processed than the LDL receptor, with only approx. 70% of the precursor being converted into the mature protein. Nevertheless, the majority of the receptor in the cells was in the mature form, and most of this was present on the cell surface. The human VLDL receptor bound rabbit very-low-density lipoprotein with beta electrophoretic mobility (betaVLDL), but not human LDL, and uptake through the receptor led to stimulation of oleate incorporation into cholesteryl esters. At 37 degrees C, the characteristics of VLDL-receptor-mediated uptake and degradation of betaVLDL were essentially the same as those mediated by the LDL receptor. However, the VLDL receptor apparently did not show the increase in affinity and decrease in binding of betaVLDL on cooling to 4 degrees C that was exhibited by the LDL receptor. Thus the overexpressed VLDL receptor in CHO cells appears to behave as a lipoprotein receptor with similar, but not identical, properties to the LDL receptor.

Full Text

The Full Text of this article is available as a PDF (461.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bujo H., Hermann M., Kaderli M. O., Jacobsen L., Sugawara S., Nimpf J., Yamamoto T., Schneider W. J. Chicken oocyte growth is mediated by an eight ligand binding repeat member of the LDL receptor family. EMBO J. 1994 Nov 1;13(21):5165–5175. doi: 10.1002/j.1460-2075.1994.tb06847.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bujo H., Yamamoto T., Hayashi K., Hermann M., Nimpf J., Schneider W. J. Mutant oocytic low density lipoprotein receptor gene family member causes atherosclerosis and female sterility. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9905–9909. doi: 10.1073/pnas.92.21.9905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cummings R. D., Kornfeld S., Schneider W. J., Hobgood K. K., Tolleshaug H., Brown M. S., Goldstein J. L. Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. J Biol Chem. 1983 Dec 25;258(24):15261–15273. [PubMed] [Google Scholar]
  4. Davis C. G., Elhammer A., Russell D. W., Schneider W. J., Kornfeld S., Brown M. S., Goldstein J. L. Deletion of clustered O-linked carbohydrates does not impair function of low density lipoprotein receptor in transfected fibroblasts. J Biol Chem. 1986 Feb 25;261(6):2828–2838. [PubMed] [Google Scholar]
  5. Esser V., Limbird L. E., Brown M. S., Goldstein J. L., Russell D. W. Mutational analysis of the ligand binding domain of the low density lipoprotein receptor. J Biol Chem. 1988 Sep 15;263(26):13282–13290. [PubMed] [Google Scholar]
  6. Forder R. A., Carey F. Measurement of human venous plasma prostacyclin and metabolites by radioimmunoassay: a reappraisal. Prostaglandins Leukot Med. 1983 Nov;12(3):323–346. doi: 10.1016/0262-1746(83)90011-2. [DOI] [PubMed] [Google Scholar]
  7. Frykman P. K., Brown M. S., Yamamoto T., Goldstein J. L., Herz J. Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8453–8457. doi: 10.1073/pnas.92.18.8453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gavigan S. J., Patel D. D., Soutar A. K., Knight B. L. An antibody to the low-density lipoprotein (LDL) receptor that partially inhibits the binding of LDL to cultured human fibroblasts. Eur J Biochem. 1988 Jan 15;171(1-2):355–361. doi: 10.1111/j.1432-1033.1988.tb13798.x. [DOI] [PubMed] [Google Scholar]
  9. Goldstein J. L., Basu S. K., Brunschede G. Y., Brown M. S. Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7(1):85–95. doi: 10.1016/0092-8674(76)90258-0. [DOI] [PubMed] [Google Scholar]
  10. Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
  11. Green N., Alexander H., Olson A., Alexander S., Shinnick T. M., Sutcliffe J. G., Lerner R. A. Immunogenic structure of the influenza virus hemagglutinin. Cell. 1982 Mar;28(3):477–487. doi: 10.1016/0092-8674(82)90202-1. [DOI] [PubMed] [Google Scholar]
  12. Jokinen E. V., Landschulz K. T., Wyne K. L., Ho Y. K., Frykman P. K., Hobbs H. H. Regulation of the very low density lipoprotein receptor by thyroid hormone in rat skeletal muscle. J Biol Chem. 1994 Oct 21;269(42):26411–26418. [PubMed] [Google Scholar]
  13. Kajinami K., Mabuchi H., Itoh H., Michishita I., Takeda M., Wakasugi T., Koizumi J., Takeda R. New variant of low density lipoprotein receptor gene. FH-Tonami. Arteriosclerosis. 1988 Mar-Apr;8(2):187–192. doi: 10.1161/01.atv.8.2.187. [DOI] [PubMed] [Google Scholar]
  14. Knight B. L., Gavigan S. J., Soutar A. K., Patel D. D. Defective processing and binding of low-density lipoprotein receptors in fibroblasts from a familial hypercholesterolaemic subject. Eur J Biochem. 1989 Feb 15;179(3):693–698. doi: 10.1111/j.1432-1033.1989.tb14602.x. [DOI] [PubMed] [Google Scholar]
  15. Knight B. L., Patel D. D., Soutar A. K. Regulation of synthesis and cell content of the low-density-lipoprotein receptor protein in cultured fibroblasts from normal and familial hypercholesterolaemic subjects. Eur J Biochem. 1987 Feb 16;163(1):189–196. doi: 10.1111/j.1432-1033.1987.tb10754.x. [DOI] [PubMed] [Google Scholar]
  16. Knight B. L., Soutar A. K., Patel D. D. Non-saturable degradation of LDL by monocyte-derived macrophages leads to a reduction in HMG-CoA reductase activity with little synthesis of cholesteryl esters. Atherosclerosis. 1987 Apr;64(2-3):131–138. doi: 10.1016/0021-9150(87)90238-3. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi K., Oka K., Forte T., Ishida B., Teng B., Ishimura-Oka K., Nakamuta M., Chan L. Reversal of hypercholesterolemia in low density lipoprotein receptor knockout mice by adenovirus-mediated gene transfer of the very low density lipoprotein receptor. J Biol Chem. 1996 Mar 22;271(12):6852–6860. doi: 10.1074/jbc.271.12.6852. [DOI] [PubMed] [Google Scholar]
  18. Koivisto P. V., Koivisto U. M., Kovanen P. T., Gylling H., Miettinen T. A., Kontula K. Deletion of exon 15 of the LDL receptor gene is associated with a mild form of familial hypercholesterolemia. FH-Espoo. Arterioscler Thromb. 1993 Nov;13(11):1680–1688. doi: 10.1161/01.atv.13.11.1680. [DOI] [PubMed] [Google Scholar]
  19. Kozarsky K. F., Jooss K., Donahee M., Strauss J. F., 3rd, Wilson J. M. Effective treatment of familial hypercholesterolaemia in the mouse model using adenovirus-mediated transfer of the VLDL receptor gene. Nat Genet. 1996 May;13(1):54–62. doi: 10.1038/ng0596-54. [DOI] [PubMed] [Google Scholar]
  20. Patel D. D., Soutar A. K., Knight B. L. A mutation and an antibody that affect chemical cross-linking of low-density lipoprotein receptors on human fibroblasts. Biochem J. 1993 Jan 15;289(Pt 2):569–573. doi: 10.1042/bj2890569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Patel D. D., Soutar A. K., Knight B. L. Abnormal structure and co-operative binding of low-density lipoprotein receptors containing the Glu-80-->Lys mutation. Biochim Biophys Acta. 1995 Apr 6;1255(3):285–292. doi: 10.1016/0005-2760(94)00243-r. [DOI] [PubMed] [Google Scholar]
  22. Russell D. W., Brown M. S., Goldstein J. L. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J Biol Chem. 1989 Dec 25;264(36):21682–21688. [PubMed] [Google Scholar]
  23. Russell D. W., Schneider W. J., Yamamoto T., Luskey K. L., Brown M. S., Goldstein J. L. Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor. Cell. 1984 Jun;37(2):577–585. doi: 10.1016/0092-8674(84)90388-x. [DOI] [PubMed] [Google Scholar]
  24. Sakai J., Hoshino A., Takahashi S., Miura Y., Ishii H., Suzuki H., Kawarabayasi Y., Yamamoto T. Structure, chromosome location, and expression of the human very low density lipoprotein receptor gene. J Biol Chem. 1994 Jan 21;269(3):2173–2182. [PubMed] [Google Scholar]
  25. Soutar A. K., Knight B. L. Degradation of lipoproteins by human monocyte-derived macrophages. Evidence for two distinct processes for the degradation of abnormal very-low-density lipoprotein from subjects with type III hyperlipidaemia. Biochem J. 1984 Feb 15;218(1):101–111. doi: 10.1042/bj2180101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Soutar A. K., Knight B. L. Immunoprecipitation of the low-density-lipoprotein (LDL) receptor and its precursor from human monocyte-derived macrophages. Biochem J. 1986 Feb 1;233(3):683–690. doi: 10.1042/bj2330683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Suzuki J., Takahashi S., Oida K., Shimada A., Kohno M., Tamai T., Miyabo S., Yamamoto T., Nakai T. Lipid accumulation and foam cell formation in Chinese hamster ovary cells overexpressing very low density lipoprotein receptor. Biochem Biophys Res Commun. 1995 Jan 26;206(3):835–842. doi: 10.1006/bbrc.1995.1119. [DOI] [PubMed] [Google Scholar]
  28. Südhof T. C., Goldstein J. L., Brown M. S., Russell D. W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17;228(4701):815–822. doi: 10.1126/science.2988123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takahashi S., Kawarabayasi Y., Nakai T., Sakai J., Yamamoto T. Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9252–9256. doi: 10.1073/pnas.89.19.9252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wade D. P., Knight B. L., Soutar A. K. Hormonal regulation of low-density lipoprotein (LDL) receptor activity in human hepatoma Hep G2 cells. Insulin increases LDL receptor activity and diminishes its suppression by exogenous LDL. Eur J Biochem. 1988 May 16;174(1):213–218. doi: 10.1111/j.1432-1033.1988.tb14084.x. [DOI] [PubMed] [Google Scholar]
  31. Webb J. C., Patel D. D., Jones M. D., Knight B. L., Soutar A. K. Characterization and tissue-specific expression of the human 'very low density lipoprotein (VLDL) receptor' mRNA. Hum Mol Genet. 1994 Apr;3(4):531–537. doi: 10.1093/hmg/3.4.531. [DOI] [PubMed] [Google Scholar]
  32. van Driel I. R., Davis C. G., Goldstein J. L., Brown M. S. Self-association of the low density lipoprotein receptor mediated by the cytoplasmic domain. J Biol Chem. 1987 Nov 25;262(33):16127–16134. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES