Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 1;324(Pt 2):435–445. doi: 10.1042/bj3240435

Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.

N Elabbadi 1, M L Ancelin 1, H J Vial 1
PMCID: PMC1218449  PMID: 9182701

Abstract

Erythrocytes infected with Plasmodium falciparum or Plasmodium knowlesi efficiently incorporated radioactive serine into phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho). Serine was also metabolized into ethanolamine (Etn) and phosphorylethanolamine (P-Etn) via direct serine decarboxylation; this is a major phenomenon since together these metabolites represent 60% of total radioactive water-soluble metabolites. They were identified by reverse-phase HPLC and two TLC-type analyses and confirmed by alkaline phosphatase treatment, which depleted the radioactive P-Etn peak completely with a concomitant increase in that of Etn. In the presence of 5 microM labelled serine, radioactivity appeared in Etn and P-Etn after a 25 min lag period, and isotopic equilibrium was reached at 40 and 95 min respectively. There was a similar lag period for PtdEtn formation, which accumulated steadily for at least 180 min. Incorporation of serine into phospholipids and water-soluble metabolites increased in the presence of up to 500 microM external serine. An apparent plateau was then reached for all metabolites except intracellular serine and Etn. Exogenous Etn (at 20 microM) induced a concomitant dramatic decrease in serine incorporation into P-Etn and all phospholipids, but not into Etn. Increasing exogenous serine to 100 microM decreased the incorporation of radioactive Etn into PtdEtn by only 30%, and the PtdCho level was not affected. 2-Hydroxyethylhydrazine significantly decreased serine incorporation into P-Etn and PtdEtn, whereas Etn was accumulated. No concomitant inhibition of PtdSer or PtdCho labelling from serine occurred, even when PtdEtn formation was decreased by 95%. This indicates that the PtdEtn pool derived from direct serine decarboxylation differed from that derived from PtdSer decarboxylation, and the latter appeared to be preferentially used for PtdCho biosynthesis. Hydroxylamine also inhibited phosphorylation of serine-derived Etn but not that of exogenous Etn. The rate of PtdSer synthesis from 10 microM L-serine was 3.1+/-0.5 and 2.95+/-1.3 nmol/5 h per 10(10) infected cells, whereas L-serine decarboxylation accounted for 7.1+/-1.5 and 9.9+/-3 nmol/5 h per 10(10) infected cells for P. falciparum and P. knowlesi respectively (means+/-S.E.M.). The serine decarboxylating reaction was not detected in other higher eukaryotic cells such as mouse fibroblasts and human lymphocytes. Finally, these results also indicate compartmentalization of phospholipid metabolism in Plasmodium-infected erythrocytes.

Full Text

The Full Text of this article is available as a PDF (573.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ancelin M. L., Vial H. J. Several lines of evidence demonstrating that Plasmodium falciparum, a parasitic organism, has distinct enzymes for the phosphorylation of choline and ethanolamine. FEBS Lett. 1986 Jul 7;202(2):217–223. doi: 10.1016/0014-5793(86)80690-1. [DOI] [PubMed] [Google Scholar]
  2. Bank B., DeWeer A., Kuzirian A. M., Rasmussen H., Alkon D. L. Classical conditioning induces long-term translocation of protein kinase C in rabbit hippocampal CA1 cells. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1988–1992. doi: 10.1073/pnas.85.6.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cook H. W., Thomas S. E., Xu Z. Essential fatty acids and serine as plasmalogen precursors in relation to competing metabolic pathways. Biochem Cell Biol. 1991 Jul;69(7):475–484. doi: 10.1139/o91-071. [DOI] [PubMed] [Google Scholar]
  4. Dowhan W., Li Q. X. Phosphatidylserine decarboxylase from Escherichia coli. Methods Enzymol. 1992;209:348–359. doi: 10.1016/0076-6879(92)09043-3. [DOI] [PubMed] [Google Scholar]
  5. Elford B. C., Cowan G. M., Ferguson D. J. Parasite-regulated membrane transport processes and metabolic control in malaria-infected erythrocytes. Biochem J. 1995 Jun 1;308(Pt 2):361–374. doi: 10.1042/bj3080361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. Gardner W. S., Miller W. H., 3rd Reverse-phase liquid chromatographic analysis of amino acids after reaction with o-phthalaldehyde. Anal Biochem. 1980 Jan 1;101(1):61–65. doi: 10.1016/0003-2697(80)90040-8. [DOI] [PubMed] [Google Scholar]
  8. Gero A. M., O'Sullivan W. J. Purines and pyrimidines in malarial parasites. Blood Cells. 1990;16(2-3):467–498. [PubMed] [Google Scholar]
  9. Gormley J. A., Howard R. J., Taraschi T. F. Trafficking of malarial proteins to the host cell cytoplasm and erythrocyte surface membrane involves multiple pathways. J Cell Biol. 1992 Dec;119(6):1481–1495. doi: 10.1083/jcb.119.6.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Griffin M., Leah J., Mould N., Compton G. Construction of an ion-exchange amino acid analyser kit for use with high-performance liquid chromatography apparatus. J Chromatogr. 1988 Oct 14;431(2):285–295. doi: 10.1016/s0378-4347(00)83097-2. [DOI] [PubMed] [Google Scholar]
  11. Haldar K., de Amorim A. F., Cross G. A. Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells. J Cell Biol. 1989 Jun;108(6):2183–2192. doi: 10.1083/jcb.108.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holz G. G., Jr Lipids and the malarial parasite. Bull World Health Organ. 1977;55(2-3):237–248. [PMC free article] [PubMed] [Google Scholar]
  13. Homewood C. A., Neame K. D. A comparison of methods used for the removal of white cells from malaria-infected blood. Ann Trop Med Parasitol. 1976 Jun;70(2):249–251. doi: 10.1080/00034983.1976.11687119. [DOI] [PubMed] [Google Scholar]
  14. Jensen J. B., Trager W. Plasmodium falciparum in culture: use of outdated erthrocytes and description of the candle jar method. J Parasitol. 1977 Oct;63(5):883–886. [PubMed] [Google Scholar]
  15. Kanaani J., Ginsburg H. Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte. Regulation of ATP levels by means of an adenylate translocator and adenylate kinase. J Biol Chem. 1989 Feb 25;264(6):3194–3199. [PubMed] [Google Scholar]
  16. Kanfer J. N. The base exchange enzymes and phospholipase D of mammalian tissue. Can J Biochem. 1980 Dec;58(12):1370–1380. doi: 10.1139/o80-186. [DOI] [PubMed] [Google Scholar]
  17. Kent C., Carman G. M., Spence M. W., Dowhan W. Regulation of eukaryotic phospholipid metabolism. FASEB J. 1991 Jun;5(9):2258–2266. doi: 10.1096/fasebj.5.9.1860617. [DOI] [PubMed] [Google Scholar]
  18. Kent C. Eukaryotic phospholipid biosynthesis. Annu Rev Biochem. 1995;64:315–343. doi: 10.1146/annurev.bi.64.070195.001531. [DOI] [PubMed] [Google Scholar]
  19. Kruse T., Reiber H., Neuhoff V. Amino acid transport across the human blood-CSF barrier. An evaluation graph for amino acid concentrations in cerebrospinal fluid. J Neurol Sci. 1985 Sep;70(2):129–138. doi: 10.1016/0022-510x(85)90082-6. [DOI] [PubMed] [Google Scholar]
  20. Kutner S., Breuer W. V., Ginsburg H., Aley S. B., Cabantchik Z. I. Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: association with parasite development. J Cell Physiol. 1985 Dec;125(3):521–527. doi: 10.1002/jcp.1041250323. [DOI] [PubMed] [Google Scholar]
  21. Lu X., Badiani K., Arthur G. 3-Deazaadenosine and MDL29350 differentially affect the methylation of serine-and ethanolamine-derived phosphatidylethanolamine in Hep G2 cells. Metabolism. 1993 Dec;42(12):1506–1508. doi: 10.1016/0026-0495(93)90143-c. [DOI] [PubMed] [Google Scholar]
  22. Miller M. A., Kent C. Characterization of the pathways for phosphatidylethanolamine biosynthesis in Chinese hamster ovary mutant and parental cell lines. J Biol Chem. 1986 Jul 25;261(21):9753–9761. [PubMed] [Google Scholar]
  23. Moreau P., Cassagne C. Phospholipid trafficking and membrane biogenesis. Biochim Biophys Acta. 1994 Dec 9;1197(3):257–290. doi: 10.1016/0304-4157(94)90010-8. [DOI] [PubMed] [Google Scholar]
  24. Nikawa J., Yamashita S. 2-hydroxyethylhydrazine as a potent inhibitor of phospholipid methylation in yeast. Biochim Biophys Acta. 1983 Apr 13;751(2):201–209. [PubMed] [Google Scholar]
  25. Nishijima M., Kuge O., Maeda M., Nakano A., Akamatsu Y. Regulation of phosphatidylcholine metabolism in mammalian cells. Isolation and characterization of a Chinese hamster ovary cell pleiotropic mutant defective in both choline kinase and choline-exchange reaction activities. J Biol Chem. 1984 Jun 10;259(11):7101–7108. [PubMed] [Google Scholar]
  26. Perry T. L., Hansen S., Kennedy J. CSF amino acids and plasma--CSF amino acid ratios in adults. J Neurochem. 1975 Mar;24(3):587–589. doi: 10.1111/j.1471-4159.1975.tb07680.x. [DOI] [PubMed] [Google Scholar]
  27. Richards W. H., Maples B. K. Studies on Plasmodium falciparum in continuous cultivation. I. The effect of chloroquine and pyrimethamine on parasite growth and viability. Ann Trop Med Parasitol. 1979 Apr;73(2):99–108. [PubMed] [Google Scholar]
  28. Rowe A. W., Eyster E., Kellner A. Liquid nitrogen preservation of red blood cells for transfusion; a low glycerol-rapid freeze procedure. Cryobiology. 1968 Sep-Oct;5(2):119–128. doi: 10.1016/s0011-2240(68)80154-3. [DOI] [PubMed] [Google Scholar]
  29. Sherman I. W. Amino acid metabolism and protein synthesis in malarial parasites. Bull World Health Organ. 1977;55(2-3):265–276. [PMC free article] [PubMed] [Google Scholar]
  30. Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shiao Y. J., Vance J. E. Evidence for an ethanolamine cycle: differential recycling of the ethanolamine moiety of phosphatidylethanolamine derived from phosphatidylserine and ethanolamine. Biochem J. 1995 Sep 1;310(Pt 2):673–679. doi: 10.1042/bj3100673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shibuya I. Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog Lipid Res. 1992;31(3):245–299. doi: 10.1016/0163-7827(92)90010-g. [DOI] [PubMed] [Google Scholar]
  33. Snell K. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv Enzyme Regul. 1984;22:325–400. doi: 10.1016/0065-2571(84)90021-9. [DOI] [PubMed] [Google Scholar]
  34. Thompson G. A., Jr, Nozawa Y. Lipids of protozoa: phospholipids and neutral lipids. Annu Rev Microbiol. 1972;26:249–278. doi: 10.1146/annurev.mi.26.100172.001341. [DOI] [PubMed] [Google Scholar]
  35. Tijburg L. B., Geelen M. J., Van Golde L. M. Biosynthesis of phosphatidylethanolamine via the CDP-ethanolamine route is an important pathway in isolated rat hepatocytes. Biochem Biophys Res Commun. 1989 May 15;160(3):1275–1280. doi: 10.1016/s0006-291x(89)80141-x. [DOI] [PubMed] [Google Scholar]
  36. Vance J. E. Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J Biol Chem. 1991 Jan 5;266(1):89–97. [PubMed] [Google Scholar]
  37. Vance J. E., Vance D. E. A deazaadenosine-insensitive methylation of phosphatidylethanolamine is involved in lipoprotein secretion. FEBS Lett. 1986 Aug 18;204(2):243–246. doi: 10.1016/0014-5793(86)80820-1. [DOI] [PubMed] [Google Scholar]
  38. Vance J. E., Vance D. E. Specific pools of phospholipids are used for lipoprotein secretion by cultured rat hepatocytes. J Biol Chem. 1986 Apr 5;261(10):4486–4491. [PubMed] [Google Scholar]
  39. Vial H. J., Ancelin M. L., Philippot J. R., Thuet M. J. Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes. Blood Cells. 1990;16(2-3):531–561. [PubMed] [Google Scholar]
  40. Vial H. J., Thuet M. J., Broussal J. L., Philippot J. R. Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospohlipid precursors and the identification of previously undetected metabolic pathways. J Parasitol. 1982 Jun;68(3):379–391. [PubMed] [Google Scholar]
  41. Vial H. J., Thuet M. J., Philippot J. R. Cholinephosphotransferase and ethanolaminephosphotransferase activities in Plasmodium knowlesi-infected erythrocytes. Their use as parasite-specific markers. Biochim Biophys Acta. 1984 Sep 12;795(2):372–383. doi: 10.1016/0005-2760(84)90088-2. [DOI] [PubMed] [Google Scholar]
  42. Voelker D. R., Frazier J. L. Isolation and characterization of a Chinese hamster ovary cell line requiring ethanolamine or phosphatidylserine for growth and exhibiting defective phosphatidylserine synthase activity. J Biol Chem. 1986 Jan 25;261(3):1002–1008. [PubMed] [Google Scholar]
  43. Voelker D. R., Golden E. B. Phosphatidylserine decarboxylase from rat liver. Methods Enzymol. 1992;209:360–365. doi: 10.1016/0076-6879(92)09044-4. [DOI] [PubMed] [Google Scholar]
  44. Voelker D. R. Reconstitution of phosphatidylserine import into rat liver mitochondria. J Biol Chem. 1989 May 15;264(14):8019–8025. [PubMed] [Google Scholar]
  45. Zolg J. W., Macleod A. J., Scaife J. G., Beaudoin R. L. The accumulation of lactic acid and its influence on the growth of Plasmodium falciparum in synchronized cultures. In Vitro. 1984 Mar;20(3 Pt 1):205–215. doi: 10.1007/BF02618189. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES