Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 1;324(Pt 2):455–459. doi: 10.1042/bj3240455

Heterologous expression of rab4 reduces glucose transport and GLUT4 abundance at the cell surface in oocytes.

S Mora 1, I Monden 1, A Zorzano 1, K Keller 1
PMCID: PMC1218451  PMID: 9182703

Abstract

To evaluate the role of the small rab GTP-binding proteins in glucose transporter trafficking, we have heterologously co-expressed rab4 or rab5 and GLUT4 or GLUT1 glucose transporters in Xenopus oocytes. Co-injection of rab4 and GLUT4 cRNAs resulted in a dose-dependent decrease in glucose transport; this effect was specific for rab4, since co-injection of an inactive rab4 mutant or rab5 cRNA did not have any effect on glucose transport. The effect of rab4 was selective for GLUT4, since no effect was detected in GLUT1-expressing oocytes. The inhibitory effect of rab4 on GLUT4-induced glucose transport was not the result of a change in overall cellular levels of GLUT4 glucose transporters. However, rab4 expression caused a marked decrease in the abundance of GLUT4 transporters present at the cell surface. Finally, rab4 and inhibitors of PtdIns 3-kinase showed additive effects in decreasing glucose transport in GLUT4-expressing oocytes. We conclude that rab4 plays an important role in the regulation of the intracellular GLUT4 trafficking pathway, by contributing to the intracellular retention of GLUT4 through a PtdIns 3-kinase-independent mechanism.

Full Text

The Full Text of this article is available as a PDF (192.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aledo J. C., Darakhshan F., Hundal H. S. Rab4, but not the transferrin receptor, is colocalized with GLUT4 in an insulin-sensitive intracellular compartment in rat skeletal muscle. Biochem Biophys Res Commun. 1995 Oct 4;215(1):321–328. doi: 10.1006/bbrc.1995.2469. [DOI] [PubMed] [Google Scholar]
  2. Araki S., Yang J., Hashiramoto M., Tamori Y., Kasuga M., Holman G. D. Subcellular trafficking kinetics of GLU4 mutated at the N- and C-terminal. Biochem J. 1996 Apr 1;315(Pt 1):153–159. doi: 10.1042/bj3150153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baldini G., Hohman R., Charron M. J., Lodish H. F. Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT 4 to the plasma membrane in alpha-toxin-permeabilized rat adipose cells. J Biol Chem. 1991 Mar 5;266(7):4037–4040. [PubMed] [Google Scholar]
  4. Camps M., Castelló A., Muñoz P., Monfar M., Testar X., Palacín M., Zorzano A. Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle. Biochem J. 1992 Mar 15;282(Pt 3):765–772. doi: 10.1042/bj2820765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chavrier P., Parton R. G., Hauri H. P., Simons K., Zerial M. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell. 1990 Jul 27;62(2):317–329. doi: 10.1016/0092-8674(90)90369-p. [DOI] [PubMed] [Google Scholar]
  6. Chavrier P., Vingron M., Sander C., Simons K., Zerial M. Molecular cloning of YPT1/SEC4-related cDNAs from an epithelial cell line. Mol Cell Biol. 1990 Dec;10(12):6578–6585. doi: 10.1128/mcb.10.12.6578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cormont M., Tanti J. F., Zahraoui A., Van Obberghen E., Tavitian A., Le Marchand-Brustel Y. Insulin and okadaic acid induce Rab4 redistribution in adipocytes. J Biol Chem. 1993 Sep 15;268(26):19491–19497. [PubMed] [Google Scholar]
  8. Fischer von Mollard G., Stahl B., Li C., Südhof T. C., Jahn R. Rab proteins in regulated exocytosis. Trends Biochem Sci. 1994 Apr;19(4):164–168. doi: 10.1016/0968-0004(94)90278-x. [DOI] [PubMed] [Google Scholar]
  9. Fischer Y., Thomas J., Rösen P., Kammermeier H. Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats. Endocrinology. 1995 Feb;136(2):412–420. doi: 10.1210/endo.136.2.7835271. [DOI] [PubMed] [Google Scholar]
  10. Garcia J. C., Strube M., Leingang K., Keller K., Mueckler M. M. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes. J Biol Chem. 1992 Apr 15;267(11):7770–7776. [PubMed] [Google Scholar]
  11. Gorvel J. P., Chavrier P., Zerial M., Gruenberg J. rab5 controls early endosome fusion in vitro. Cell. 1991 Mar 8;64(5):915–925. doi: 10.1016/0092-8674(91)90316-q. [DOI] [PubMed] [Google Scholar]
  12. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gould G. W., Lienhard G. E. Expression of a functional glucose transporter in Xenopus oocytes. Biochemistry. 1989 Nov 28;28(24):9447–9452. doi: 10.1021/bi00450a030. [DOI] [PubMed] [Google Scholar]
  14. Gould G. W., Thomas H. M., Jess T. J., Bell G. I. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry. 1991 May 28;30(21):5139–5145. doi: 10.1021/bi00235a004. [DOI] [PubMed] [Google Scholar]
  15. Janicot M., Lane M. D. Activation of glucose uptake by insulin and insulin-like growth factor I in Xenopus oocytes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2642–2646. doi: 10.1073/pnas.86.8.2642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keller K., Strube M., Mueckler M. Functional expression of the human HepG2 and rat adipocyte glucose transporters in Xenopus oocytes. Comparison of kinetic parameters. J Biol Chem. 1989 Nov 15;264(32):18884–18889. [PubMed] [Google Scholar]
  17. Marshall B. A., Murata H., Hresko R. C., Mueckler M. Domains that confer intracellular sequestration of the Glut4 glucose transporter in Xenopus oocytes. J Biol Chem. 1993 Dec 15;268(35):26193–26199. [PubMed] [Google Scholar]
  18. Mora S., Kaliman P., Chillarón J., Testar X., Palacín M., Zorzano A. Insulin and insulin-like growth factor I (IGF-I) stimulate GLUT4 glucose transporter translocation in Xenopus oocytes. Biochem J. 1995 Oct 1;311(Pt 1):59–65. doi: 10.1042/bj3110059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
  20. Ricort J. M., Tanti J. F., Cormont M., Van Obberghen E., Le Marchand-Brustel Y. Parallel changes in Glut 4 and Rab4 movements in two insulin-resistant states. FEBS Lett. 1994 Jun 20;347(1):42–44. doi: 10.1016/0014-5793(94)00510-9. [DOI] [PubMed] [Google Scholar]
  21. Robinson L. J., Pang S., Harris D. S., Heuser J., James D. E. Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP insulin, and GTP gamma S and localization of GLUT4 to clathrin lattices. J Cell Biol. 1992 Jun;117(6):1181–1196. doi: 10.1083/jcb.117.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sherman L. A., Hirshman M. F., Cormont M., Le Marchand-Brustel Y., Goodyear L. J. Differential effects of insulin and exercise on Rab4 distribution in rat skeletal muscle. Endocrinology. 1996 Jan;137(1):266–273. doi: 10.1210/endo.137.1.8536622. [DOI] [PubMed] [Google Scholar]
  23. Shibata H., Omata W., Suzuki Y., Tanaka S., Kojima I. A synthetic peptide corresponding to the Rab4 hypervariable carboxyl-terminal domain inhibits insulin action on glucose transport in rat adipocytes. J Biol Chem. 1996 Apr 19;271(16):9704–9709. doi: 10.1074/jbc.271.16.9704. [DOI] [PubMed] [Google Scholar]
  24. Simons K., Zerial M. Rab proteins and the road maps for intracellular transport. Neuron. 1993 Nov;11(5):789–799. doi: 10.1016/0896-6273(93)90109-5. [DOI] [PubMed] [Google Scholar]
  25. Tanti J. F., Grémeaux T., Grillo S., Calleja V., Klippel A., Williams L. T., Van Obberghen E., Le Marchand-Brustel Y. Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote Glut 4 translocation in adipocytes. J Biol Chem. 1996 Oct 11;271(41):25227–25232. doi: 10.1074/jbc.271.41.25227. [DOI] [PubMed] [Google Scholar]
  26. Thomas H. M., Takeda J., Gould G. W. Differential targeting of glucose transporter isoforms heterologously expressed in Xenopus oocytes. Biochem J. 1993 Mar 15;290(Pt 3):707–715. doi: 10.1042/bj2900707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Todaka M., Hayashi H., Imanaka T., Mitani Y., Kamohara S., Kishi K., Tamaoka K., Kanai F., Shichiri M., Morii N. Roles of insulin, guanosine 5'-[gamma-thio]triphosphate and phorbol 12-myristate 13-acetate in signalling pathways of GLUT4 translocation. Biochem J. 1996 May 1;315(Pt 3):875–882. doi: 10.1042/bj3150875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Uphues I., Kolter T., Goud B., Eckel J. Insulin-induced translocation of the glucose transporter GLUT4 in cardiac muscle: studies on the role of small-molecular-mass GTP-binding proteins. Biochem J. 1994 Jul 1;301(Pt 1):177–182. doi: 10.1042/bj3010177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Van Der Sluijs P., Hull M., Zahraoui A., Tavitian A., Goud B., Mellman I. The small GTP-binding protein rab4 is associated with early endosomes. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6313–6317. doi: 10.1073/pnas.88.14.6313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Van Der Sluijs P., Hull M., Zahraoui A., Tavitian A., Goud B., Mellman I. The small GTP-binding protein rab4 is associated with early endosomes. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6313–6317. doi: 10.1073/pnas.88.14.6313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vera J. C., Rosen O. M. Functional expression of mammalian glucose transporters in Xenopus laevis oocytes: evidence for cell-dependent insulin sensitivity. Mol Cell Biol. 1989 Oct;9(10):4187–4195. doi: 10.1128/mcb.9.10.4187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yang J., Clarke J. F., Ester C. J., Young P. W., Kasuga M., Holman G. D. Phosphatidylinositol 3-kinase acts at an intracellular membrane site to enhance GLUT4 exocytosis in 3T3-L1 cells. Biochem J. 1996 Jan 1;313(Pt 1):125–131. doi: 10.1042/bj3130125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zerial M., Stenmark H. Rab GTPases in vesicular transport. Curr Opin Cell Biol. 1993 Aug;5(4):613–620. doi: 10.1016/0955-0674(93)90130-i. [DOI] [PubMed] [Google Scholar]
  34. van der Sluijs P., Hull M., Webster P., Mâle P., Goud B., Mellman I. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell. 1992 Sep 4;70(5):729–740. doi: 10.1016/0092-8674(92)90307-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES