Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 1;324(Pt 2):481–488. doi: 10.1042/bj3240481

Sphingosine 1-phosphate stimulates rho-mediated tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 fibroblasts.

F Wang 1, C D Nobes 1, A Hall 1, S Spiegel 1
PMCID: PMC1218455  PMID: 9182707

Abstract

Sphingosine 1-phosphate (SPP), a sphingolipid second messenger implicated in the mitogenic action of platelet-derived growth factor [Olivera, A. and Spiegel, S. (1993) Nature (London) 365, 557-560], induced rapid reorganization of the actin cytoskeleton resulting in stress-fibre formation. SPP also induced transient tyrosine phosphorylation of focal adhesion kinase (p125(FAK)), a cytosolic tyrosine kinase that localizes in focal adhesions, and of the cytoskeleton-associated protein paxillin. Exoenzyme C3 transferase, which ADP-ribosylates Rho (a Ras-related small GTP binding protein) on asparagine-41 and renders it biologically inactive, inhibited both stress-fibre formation and protein tyrosine phosphorylation induced by SPP. Thus Rho may be an upstream regulator of both stress-fibre formation and tyrosine phosphorylation of p125(FAK) and paxillin. Pretreatment with PMA, an activator of protein kinase C (PKC), inhibited the stimulation of stress-fibre formation induced by 1-oleoyl-lysophosphatidic acid (LPA) but not that by SPP. Similarly, PMA also decreased LPA-induced tyrosine phosphorylation of p125(FAK) and paxillin without abrogating the response to SPP. Thus PKC is involved in LPA- but not SPP-dependent signalling. The polyanionic drug suramin, a broad-specificity inhibitor of ligand-receptor interactions, did not inhibit either the mitogenic effect of SPP or its stimulation of tyrosine phosphorylation of p125(FAK). However, suramin markedly inhibited these responses induced by LPA. These results suggest that in contrast with LPA, SPP may be acting intracellularly in Swiss 3T3 fibroblasts to stimulate tyrosine phosphorylation of p125(FAK) and paxillin and cell growth.

Full Text

The Full Text of this article is available as a PDF (512.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abedi H., Dawes K. E., Zachary I. Differential effects of platelet-derived growth factor BB on p125 focal adhesion kinase and paxillin tyrosine phosphorylation and on cell migration in rabbit aortic vascular smooth muscle cells and Swiss 3T3 fibroblasts. J Biol Chem. 1995 May 12;270(19):11367–11376. doi: 10.1074/jbc.270.19.11367. [DOI] [PubMed] [Google Scholar]
  2. Betsholtz C., Johnsson A., Heldin C. H., Westermark B. Efficient reversion of simian sarcoma virus-transformation and inhibition of growth factor-induced mitogenesis by suramin. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6440–6444. doi: 10.1073/pnas.83.17.6440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bornfeldt K. E., Graves L. M., Raines E. W., Igarashi Y., Wayman G., Yamamura S., Yatomi Y., Sidhu J. S., Krebs E. G., Hakomori S. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol. 1995 Jul;130(1):193–206. doi: 10.1083/jcb.130.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bünemann M., Liliom K., Brandts B. K., Pott L., Tseng J. L., Desiderio D. M., Sun G., Miller D., Tigyi G. A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine 1-phosphate in atrial myocytes. EMBO J. 1996 Oct 15;15(20):5527–5534. [PMC free article] [PubMed] [Google Scholar]
  5. Clark E. A., Brugge J. S. Integrins and signal transduction pathways: the road taken. Science. 1995 Apr 14;268(5208):233–239. doi: 10.1126/science.7716514. [DOI] [PubMed] [Google Scholar]
  6. Coroneos E., Martinez M., McKenna S., Kester M. Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J Biol Chem. 1995 Oct 6;270(40):23305–23309. doi: 10.1074/jbc.270.40.23305. [DOI] [PubMed] [Google Scholar]
  7. Desai N. N., Carlson R. O., Mattie M. E., Olivera A., Buckley N. E., Seki T., Brooker G., Spiegel S. Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts. J Cell Biol. 1993 Jun;121(6):1385–1395. doi: 10.1083/jcb.121.6.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghosh T. K., Bian J., Gill D. L. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J Biol Chem. 1994 Sep 9;269(36):22628–22635. [PubMed] [Google Scholar]
  9. Goodemote K. A., Mattie M. E., Berger A., Spiegel S. Involvement of a pertussis toxin-sensitive G protein in the mitogenic signaling pathways of sphingosine 1-phosphate. J Biol Chem. 1995 Apr 28;270(17):10272–10277. doi: 10.1074/jbc.270.17.10272. [DOI] [PubMed] [Google Scholar]
  10. Hannun Y. A., Bell R. M. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science. 1987 Feb 6;235(4789):670–674. doi: 10.1126/science.3101176. [DOI] [PubMed] [Google Scholar]
  11. Hannun Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994 Feb 4;269(5):3125–3128. [PubMed] [Google Scholar]
  12. Heller R. A., Krönke M. Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol. 1994 Jul;126(1):5–9. doi: 10.1083/jcb.126.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill C. S., Wynne J., Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159–1170. doi: 10.1016/s0092-8674(05)80020-0. [DOI] [PubMed] [Google Scholar]
  14. Ilić D., Furuta Y., Kanazawa S., Takeda N., Sobue K., Nakatsuji N., Nomura S., Fujimoto J., Okada M., Yamamoto T. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 1995 Oct 12;377(6549):539–544. doi: 10.1038/377539a0. [DOI] [PubMed] [Google Scholar]
  15. Jacobs L. S., Kester M. Sphingolipids as mediators of effects of platelet-derived growth factor in vascular smooth muscle cells. Am J Physiol. 1993 Sep;265(3 Pt 1):C740–C747. doi: 10.1152/ajpcell.1993.265.3.C740. [DOI] [PubMed] [Google Scholar]
  16. Jalink K., Hengeveld T., Mulder S., Postma F. R., Simon M. F., Chap H., van der Marel G. A., van Boom J. H., van Blitterswijk W. J., Moolenaar W. H. Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis. Biochem J. 1995 Apr 15;307(Pt 2):609–616. doi: 10.1042/bj3070609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kolesnick R., Golde D. W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 1994 May 6;77(3):325–328. doi: 10.1016/0092-8674(94)90147-3. [DOI] [PubMed] [Google Scholar]
  18. Kumagai N., Morii N., Fujisawa K., Nemoto Y., Narumiya S. ADP-ribosylation of rho p21 inhibits lysophosphatidic acid-induced protein tyrosine phosphorylation and phosphatidylinositol 3-kinase activation in cultured Swiss 3T3 cells. J Biol Chem. 1993 Nov 25;268(33):24535–24538. [PubMed] [Google Scholar]
  19. Leeb-Lundberg L. M., Song X. H., Mathis S. A. Focal adhesion-associated proteins p125FAK and paxillin are substrates for bradykinin-stimulated tyrosine phosphorylation in Swiss 3T3 cells. J Biol Chem. 1994 Sep 30;269(39):24328–24334. [PubMed] [Google Scholar]
  20. Mattie M., Brooker G., Spiegel S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J Biol Chem. 1994 Feb 4;269(5):3181–3188. [PubMed] [Google Scholar]
  21. Nobes C. D., Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53–62. doi: 10.1016/0092-8674(95)90370-4. [DOI] [PubMed] [Google Scholar]
  22. Olivera A., Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature. 1993 Oct 7;365(6446):557–560. doi: 10.1038/365557a0. [DOI] [PubMed] [Google Scholar]
  23. Olivera A., Zhang H., Carlson R. O., Mattie M. E., Schmidt R. R., Spiegel S. Stereospecificity of sphingosine-induced intracellular calcium mobilization and cellular proliferation. J Biol Chem. 1994 Jul 8;269(27):17924–17930. [PubMed] [Google Scholar]
  24. Olson M. F., Ashworth A., Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995 Sep 1;269(5228):1270–1272. doi: 10.1126/science.7652575. [DOI] [PubMed] [Google Scholar]
  25. Postma F. R., Jalink K., Hengeveld T., Moolenaar W. H. Sphingosine-1-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor. EMBO J. 1996 May 15;15(10):2388–2392. [PMC free article] [PubMed] [Google Scholar]
  26. Pyne S., Chapman J., Steele L., Pyne N. J. Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur J Biochem. 1996 May 1;237(3):819–826. doi: 10.1111/j.1432-1033.1996.0819p.x. [DOI] [PubMed] [Google Scholar]
  27. Rankin S., Rozengurt E. Platelet-derived growth factor modulation of focal adhesion kinase (p125FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells. Bell-shaped dose response and cross-talk with bombesin. J Biol Chem. 1994 Jan 7;269(1):704–710. [PubMed] [Google Scholar]
  28. Ridley A. J., Hall A. Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J. 1994 Jun 1;13(11):2600–2610. doi: 10.1002/j.1460-2075.1994.tb06550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  30. Sadahira Y., Ruan F., Hakomori S., Igarashi Y. Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9686–9690. doi: 10.1073/pnas.89.20.9686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sasaki T., Hazeki K., Hazeki O., Ui M., Katada T. Focal adhesion kinase (p125FAK) and paxillin are substrates for sphingomyelinase-induced tyrosine phosphorylation in Swiss 3T3 fibroblasts. Biochem J. 1996 May 1;315(Pt 3):1035–1040. doi: 10.1042/bj3151035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schroeder J. J., Crane H. M., Xia J., Liotta D. C., Merrill A. H., Jr Disruption of sphingolipid metabolism and stimulation of DNA synthesis by fumonisin B1. A molecular mechanism for carcinogenesis associated with Fusarium moniliforme. J Biol Chem. 1994 Feb 4;269(5):3475–3481. [PubMed] [Google Scholar]
  33. Seufferlein T., Rozengurt E. Sphingosine induces p125FAK and paxillin tyrosine phosphorylation, actin stress fiber formation, and focal contact assembly in Swiss 3T3 cells. J Biol Chem. 1994 Nov 4;269(44):27610–27617. [PubMed] [Google Scholar]
  34. Seufferlein T., Rozengurt E. Sphingosylphosphorylcholine activation of mitogen-activated protein kinase in Swiss 3T3 cells requires protein kinase C and a pertussis toxin-sensitive G protein. J Biol Chem. 1995 Oct 13;270(41):24334–24342. doi: 10.1074/jbc.270.41.24334. [DOI] [PubMed] [Google Scholar]
  35. Spiegel S., Milstien S. Sphingolipid metabolites: members of a new class of lipid second messengers. J Membr Biol. 1995 Aug;146(3):225–237. doi: 10.1007/BF00233943. [DOI] [PubMed] [Google Scholar]
  36. Spiegel S., Panagiotopoulos C. Mitogenesis of 3T3 fibroblasts induced by endogenous ganglioside is not mediated by cAMP, protein kinase C, or phosphoinositides turnover. Exp Cell Res. 1988 Aug;177(2):414–427. doi: 10.1016/0014-4827(88)90474-0. [DOI] [PubMed] [Google Scholar]
  37. Spiegel S. Possible involvement of a GTP-binding protein in a late event during endogenous ganglioside-modulated cellular proliferation. J Biol Chem. 1989 Apr 25;264(12):6766–6772. [PubMed] [Google Scholar]
  38. Stoffel W., Hellenbroich B., Heimann G. Properties and specificities of sphingosine kinase from blood platelets. Hoppe Seylers Z Physiol Chem. 1973 Oct-Nov;354(10-11):1311–1316. doi: 10.1515/bchm2.1973.354.2.1311. [DOI] [PubMed] [Google Scholar]
  39. Su Y., Rosenthal D., Smulson M., Spiegel S. Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1994 Jun 10;269(23):16512–16517. [PubMed] [Google Scholar]
  40. Van Veldhoven P. P., Mannaerts G. P. Sphinganine 1-phosphate metabolism in cultured skin fibroblasts: evidence for the existence of a sphingosine phosphatase. Biochem J. 1994 May 1;299(Pt 3):597–601. doi: 10.1042/bj2990597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wu J., Spiegel S., Sturgill T. W. Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J Biol Chem. 1995 May 12;270(19):11484–11488. doi: 10.1074/jbc.270.19.11484. [DOI] [PubMed] [Google Scholar]
  42. Yatomi Y., Ruan F., Hakomori S., Igarashi Y. Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood. 1995 Jul 1;86(1):193–202. [PubMed] [Google Scholar]
  43. Zhang H., Buckley N. E., Gibson K., Spiegel S. Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J Biol Chem. 1990 Jan 5;265(1):76–81. [PubMed] [Google Scholar]
  44. Zhang H., Desai N. N., Olivera A., Seki T., Brooker G., Spiegel S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol. 1991 Jul;114(1):155–167. doi: 10.1083/jcb.114.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van Corven E. J., Groenink A., Jalink K., Eichholtz T., Moolenaar W. H. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell. 1989 Oct 6;59(1):45–54. doi: 10.1016/0092-8674(89)90868-4. [DOI] [PubMed] [Google Scholar]
  46. van Corven E. J., van Rijswijk A., Jalink K., van der Bend R. L., van Blitterswijk W. J., Moolenaar W. H. Mitogenic action of lysophosphatidic acid and phosphatidic acid on fibroblasts. Dependence on acyl-chain length and inhibition by suramin. Biochem J. 1992 Jan 1;281(Pt 1):163–169. doi: 10.1042/bj2810163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. van Koppen C., Meyer zu Heringdorf M., Laser K. T., Zhang C., Jakobs K. H., Bünemann M., Pott L. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J Biol Chem. 1996 Jan 26;271(4):2082–2087. doi: 10.1074/jbc.271.4.2082. [DOI] [PubMed] [Google Scholar]
  48. van der Bend R. L., Brunner J., Jalink K., van Corven E. J., Moolenaar W. H., van Blitterswijk W. J. Identification of a putative membrane receptor for the bioactive phospholipid, lysophosphatidic acid. EMBO J. 1992 Jul;11(7):2495–2501. doi: 10.1002/j.1460-2075.1992.tb05314.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES