Abstract
A novel copper-depleted bovine serum amine oxidase (BSAO), in which about half the molecules contained the organic cofactor in the oxidized form, was prepared by adding a reductant in anaerobic conditions to the cyanide-reacted protein. The CuI-semiquinone formed in these conditions reoxidizes after the removal of copper. The inactive derivative was reduced by benzylamine at approx. 1/1000 the rate of BSAO. The pseudo-first-order reaction was preceded by the formation of a protein-benzylamine complex with dissociation constant, Kd, of 4.9+/-0.5 mM, similar to the Km of BSAO (2.2 mM). Also the reactions with phenylhydrazine and benzohydrazide were considerably slower than in holo-BSAO, whereas the reactions with p-pyridine-2-ylphenylacetohydrazide, containing a longer aromatic tail, and semicarbazide, lacking an aromatic moiety, were less severely affected. Removal of copper had no effect on the optical spectra of BSAO and of most adducts, containing the cofactor in quinol form, showing that copper is bound to neither the oxidized nor the reduced cofactor. Benzylhydrazine did not produce optical effects but was tightly bound, as inferred from its inhibitory effect on reaction with other molecules. Substrate and inhibitors might bind a hydrophobic pocket at some distance from the quinone, probably near the protein surface, with their affinity depending on the hydrophobic character and pKa. The binding, which is not greatly influenced by copper removal, probably induces a copper-dependent change of conformation, 'opening' a pathway to the active site buried in the protein interior.
Full Text
The Full Text of this article is available as a PDF (259.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agostinelli E., Morpurgo L., Wang C., Giartosio A., Mondovì B. Properties of cobalt-substituted bovine serum amine oxidase. Eur J Biochem. 1994 Jun 15;222(3):727–732. doi: 10.1111/j.1432-1033.1994.tb18918.x. [DOI] [PubMed] [Google Scholar]
- Bellelli A., Agro A. F., Floris G., Brunori M. On the mechanism and rate of substrate oxidation by amine oxidase from lentil seedlings. J Biol Chem. 1991 Nov 5;266(31):20654–20657. [PubMed] [Google Scholar]
- Bossa M., Morpurgo G. O., Morpurgo L. Models and molecular orbital semiempirical calculations in the study of the spectroscopic properties of bovine serum amine oxidase quinone cofactor. Biochemistry. 1994 Apr 12;33(14):4425–4431. doi: 10.1021/bi00180a041. [DOI] [PubMed] [Google Scholar]
- Choi Y. H., Matsuzaki R., Fukui T., Shimizu E., Yorifuji T., Sato H., Ozaki Y., Tanizawa K. Copper/topa quinone-containing histamine oxidase from Arthrobacter globiformis. Molecular cloning and sequencing, overproduction of precursor enzyme, and generation of topa quinone cofactor. J Biol Chem. 1995 Mar 3;270(9):4712–4720. doi: 10.1074/jbc.270.9.4712. [DOI] [PubMed] [Google Scholar]
- De Biase D., Agostinelli E., De Matteis G., Mondovì B., Morpurgo L. Half-of-the-sites reactivity of bovine serum amine oxidase. Reactivity and chemical identity of the second site. Eur J Biochem. 1996 Apr 1;237(1):93–99. doi: 10.1111/j.1432-1033.1996.0093n.x. [DOI] [PubMed] [Google Scholar]
- Dooley D. M., McGuirl M. A., Brown D. E., Turowski P. N., McIntire W. S., Knowles P. F. A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature. 1991 Jan 17;349(6306):262–264. doi: 10.1038/349262a0. [DOI] [PubMed] [Google Scholar]
- Hartmann C., Klinman J. P. Structure-function studies of substrate oxidation by bovine serum amine oxidase: relationship to cofactor structure and mechanism. Biochemistry. 1991 May 7;30(18):4605–4611. doi: 10.1021/bi00232a035. [DOI] [PubMed] [Google Scholar]
- Janes S. M., Klinman J. P. An investigation of bovine serum amine oxidase active site stoichiometry: evidence for an aminotransferase mechanism involving two carbonyl cofactors per enzyme dimer. Biochemistry. 1991 May 7;30(18):4599–4605. doi: 10.1021/bi00232a034. [DOI] [PubMed] [Google Scholar]
- Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A. L., Klinman J. P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science. 1990 May 25;248(4958):981–987. doi: 10.1126/science.2111581. [DOI] [PubMed] [Google Scholar]
- Kumar V., Dooley D. M., Freeman H. C., Guss J. M., Harvey I., McGuirl M. A., Wilce M. C., Zubak V. M. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution. Structure. 1996 Aug 15;4(8):943–955. doi: 10.1016/s0969-2126(96)00101-3. [DOI] [PubMed] [Google Scholar]
- Lindström A., Olsson B., Pettersson G. Kinetics of the interaction between pig-plasma benzylamine oxidase and hydrazine derivatives. Eur J Biochem. 1974 Feb 15;42(1):177–182. doi: 10.1111/j.1432-1033.1974.tb03327.x. [DOI] [PubMed] [Google Scholar]
- Lindström A., Olsson B., Pettersson G., Szymanska J. Kinetics of the interaction between pig-plasma benzylamine oxidase and various monoamines. Eur J Biochem. 1974 Aug 15;47(1):99–105. doi: 10.1111/j.1432-1033.1974.tb03672.x. [DOI] [PubMed] [Google Scholar]
- McGuirl M. A., McCahon C. D., McKeown K. A., Dooley D. M. Purification and characterization of pea seedling amine oxidase for crystallization studies. Plant Physiol. 1994 Nov;106(3):1205–1211. doi: 10.1104/pp.106.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medda R., Padiglia A., Pedersen J. Z., Rotilio G., Finazzi Agrò A., Floris G. The reaction mechanism of copper amine oxidase: detection of intermediates by the use of substrates and inhibitors. Biochemistry. 1995 Dec 19;34(50):16375–16381. doi: 10.1021/bi00050a018. [DOI] [PubMed] [Google Scholar]
- Morpurgo L., Agostinelli E., Mondovi B., Avigliano L., Silvestri R., Stefancich G., Artico M. Bovine serum amine oxidase: half-site reactivity with phenylhydrazine, semicarbazide, and aromatic hydrazides. Biochemistry. 1992 Mar 10;31(9):2615–2621. doi: 10.1021/bi00124a023. [DOI] [PubMed] [Google Scholar]
- Morpurgo L., Agostinelli E., Mondovì B., Avigliano L. The role of copper in bovine serum amine oxidase. Biol Met. 1990;3(2):114–117. doi: 10.1007/BF01179516. [DOI] [PubMed] [Google Scholar]
- Morpurgo L., Agostinelli E., Muccigrosso J., Martini F., Mondovi B., Avigliano L. Benzylhydrazine as a pseudo-substrate of bovine serum amine oxidase. Biochem J. 1989 May 15;260(1):19–25. doi: 10.1042/bj2600019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moënne-Loccoz P., Nakamura N., Steinebach V., Duine J. A., Mure M., Klinman J. P., Sanders-Loehr J. Characterization of the topa quinone cofactor in amine oxidase from Escherichia coli by resonance Raman spectroscopy. Biochemistry. 1995 May 30;34(21):7020–7026. doi: 10.1021/bi00021a013. [DOI] [PubMed] [Google Scholar]
- Mu D., Janes S. M., Smith A. J., Brown D. E., Dooley D. M., Klinman J. P. Tyrosine codon corresponds to topa quinone at the active site of copper amine oxidases. J Biol Chem. 1992 Apr 25;267(12):7979–7982. [PubMed] [Google Scholar]
- Mu D., Medzihradszky K. F., Adams G. W., Mayer P., Hines W. M., Burlingame A. L., Smith A. J., Cai D., Klinman J. P. Primary structures for a mammalian cellular and serum copper amine oxidase. J Biol Chem. 1994 Apr 1;269(13):9926–9932. [PubMed] [Google Scholar]
- Padiglia A., Medda R., Floris G. Lentil seedling amine oxidase: interaction with carbonyl reagents. Biochem Int. 1992 Dec;28(6):1097–1107. [PubMed] [Google Scholar]
- Parsons M. R., Convery M. A., Wilmot C. M., Yadav K. D., Blakeley V., Corner A. S., Phillips S. E., McPherson M. J., Knowles P. F. Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure. 1995 Nov 15;3(11):1171–1184. doi: 10.1016/s0969-2126(01)00253-2. [DOI] [PubMed] [Google Scholar]
- Pedersen J. Z., el-Sherbini S., Finazzi-Agrò A., Rotilio G. A substrate-cofactor free radical intermediate in the reaction mechanism of copper amine oxidase. Biochemistry. 1992 Jan 14;31(1):8–12. doi: 10.1021/bi00116a002. [DOI] [PubMed] [Google Scholar]
- Rinaldi A., Giartosio A., Floris G., Medda R., Finazzi Agrò A. Lentil seedlings amine oxidase: preparation and properties of the copper-free enzyme. Biochem Biophys Res Commun. 1984 Apr 16;120(1):242–249. doi: 10.1016/0006-291x(84)91440-2. [DOI] [PubMed] [Google Scholar]
- Steinebach V., De Jong G. A., Wijmenga S. S., De Vries S., Duine J. A. The copper-topaquinone-phenylhydrazine-adduct geometry in Escherichia coli amine oxidase derivatized with phenylhydrazines substituted with 19F-NMR relaxation measurements. Eur J Biochem. 1996 Jun 15;238(3):683–689. doi: 10.1111/j.1432-1033.1996.0683w.x. [DOI] [PubMed] [Google Scholar]
- Stevanato R., Mondovi B., Befani O., Scarpa M., Rigo A. Electrostatic control of oxidative deamination catalysed by bovine serum amine oxidase. Biochem J. 1994 Apr 1;299(Pt 1):317–320. doi: 10.1042/bj2990317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strickland S., Palmer G., Massey V. Determination of dissociation constants and specific rate constants of enzyme-substrate (or protein-ligand) interactions from rapid reaction kinetic data. J Biol Chem. 1975 Jun 10;250(11):4048–4052. [PubMed] [Google Scholar]
- Suzuki S., Sakurai T., Nakahara A., Manabe T., Okuyama T. Effect of metal substitution on the chromophore of bovine serum amine oxidase. Biochemistry. 1983 Mar 29;22(7):1630–1635. doi: 10.1021/bi00276a016. [DOI] [PubMed] [Google Scholar]
- TABOR C. W., TABOR H., ROSENTHAL S. M. Purification of amine oxidase from beef plasma. J Biol Chem. 1954 Jun;208(2):645–661. [PubMed] [Google Scholar]
- Tipping A. J., McPherson M. J. Cloning and molecular analysis of the pea seedling copper amine oxidase. J Biol Chem. 1995 Jul 14;270(28):16939–16946. doi: 10.1074/jbc.270.28.16939. [DOI] [PubMed] [Google Scholar]
- Turini P., Sabatini S., Befani O., Chimenti F., Casanova C., Riccio P. L., Mondovì B. Purification of bovine plasma amine oxidase. Anal Biochem. 1982 Sep 15;125(2):294–298. doi: 10.1016/0003-2697(82)90009-4. [DOI] [PubMed] [Google Scholar]
- Turowski P. N., McGuirl M. A., Dooley D. M. Intramolecular electron transfer rate between active-site copper and topa quinone in pea seedling amine oxidase. J Biol Chem. 1993 Aug 25;268(24):17680–17682. [PubMed] [Google Scholar]