Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 1;324(Pt 2):503–509. doi: 10.1042/bj3240503

ADP-glucose drives starch synthesis in isolated maize endosperm amyloplasts: characterization of starch synthesis and transport properties across the amyloplast envelope.

T Möhlmann 1, J Tjaden 1, G Henrichs 1, W P Quick 1, R Häusler 1, H E Neuhaus 1
PMCID: PMC1218458  PMID: 9182710

Abstract

We recently developed a method of purifying amyloplasts from developing maize (Zea mays L.) endosperm tissue [Neuhaus, Thom, Batz and Scheibe (1993) Biochem. J. 296, 395-401]. In the present paper we analyse how glucose 6-phosphate (Glc6P) and other phosphorylated compounds enter the plastid compartment. Using a proteoliposome system in which the plastid envelope membrane proteins are functionally reconstituted, we demonstrate that this type of plastid is able to transport [14C]Glc6P or [32P]Pi in counter exchange with Pi, Glc6P, dihydroxyacetone phosphate and phosphoenolpyruvate. Glucose 1-phosphate, fructose 6-phosphate and ribose 5-phosphate do not act as substrates for counter exchange. Besides hexose phosphates, ADP-glucose (ADPGlc) also acts as a substrate for starch synthesis in isolated maize endosperm amyloplasts. This process exhibits saturation kinetics with increasing concentrations of exogenously supplied [14C]ADPGlc, reaching a maximum at 2mM. Ultrasonication of isolated amyloplasts greatly reduces the rate of ADPGlc-dependent starch synthesis, indicating that the process is dependent on the intactness of the organelles. The plastid ATP/ADP transporter is not responsible for ADPGlc uptake. Data are presented that indicate that ADPGlc is transported by another translocator in counter exchange with AMP. To analyse the physiology of starch synthesis in more detail, we examined how Glc6P- and ADPGlc-dependent starch synthesis in isolated maize endosperm amyloplasts interact. Glc6P-dependent starch synthesis is not inhibited by increasing concentrations of ADPGlc. In contrast, the rate of ADPGlc-dependent starch synthesis is reduced by increasing concentrations of ATP necessary for Glc6P-dependent starch synthesis. The possible modes of inhibition of ADPGlc-dependent starch synthesis by ATP are discussed with respect to the stromal generation of AMP required for ADPGlc uptake.

Full Text

The Full Text of this article is available as a PDF (317.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeijon C., Hirschberg C. B. Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci. 1992 Jan;17(1):32–36. doi: 10.1016/0968-0004(92)90424-8. [DOI] [PubMed] [Google Scholar]
  2. Alban C., Joyard J., Douce R. Preparation and characterization of envelope membranes from nongreen plastids. Plant Physiol. 1988 Nov;88(3):709–717. doi: 10.1104/pp.88.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batz O., Maass U., Henrichs G., Scheibe R., Neuhaus H. E. Glucose- and ADPGlc-dependent starch synthesis in isolated cauliflower-bud amyloplasts. Analysis of the interaction of various potential precursors. Biochim Biophys Acta. 1994 Jul 6;1200(2):148–154. doi: 10.1016/0304-4165(94)90129-5. [DOI] [PubMed] [Google Scholar]
  4. Batz O., Scheibe R., Neuhaus H. E. Identification of the putative hexose-phosphate translocator of amyloplasts from cauliflower buds. Biochem J. 1993 Aug 15;294(Pt 1):15–17. doi: 10.1042/bj2940015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borchert S., Harborth J., Schunemann D., Hoferichter P., Heldt H. W. Studies of the Enzymic Capacities and Transport Properties of Pea Root Plastids. Plant Physiol. 1993 Jan;101(1):303–312. doi: 10.1104/pp.101.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Denyer K., Dunlap F., Thorbjørnsen T., Keeling P., Smith A. M. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol. 1996 Oct;112(2):779–785. doi: 10.1104/pp.112.2.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Entwistle G., ap Rees T. A. Lack of fructose-1,6-bisphosphatase in a range of higher plants that store starch. Biochem J. 1990 Oct 15;271(2):467–472. doi: 10.1042/bj2710467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fliege R., Flügge U. I., Werdan K., Heldt H. W. Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta. 1978 May 10;502(2):232–247. doi: 10.1016/0005-2728(78)90045-2. [DOI] [PubMed] [Google Scholar]
  9. Kampfenkel K., Möhlmann T., Batz O., Van Montagu M., Inzé D., Neuhaus H. E. Molecular characterization of an Arabidopsis thaliana cDNA encoding a novel putative adenylate translocator of higher plants. FEBS Lett. 1995 Nov 6;374(3):351–355. doi: 10.1016/0014-5793(95)01143-3. [DOI] [PubMed] [Google Scholar]
  10. Keeling P. L., Wood J. R., Tyson R. H., Bridges I. G. Starch Biosynthesis in Developing Wheat Grain : Evidence against the Direct Involvement of Triose Phosphates in the Metabolic Pathway. Plant Physiol. 1988 Jun;87(2):311–319. doi: 10.1104/pp.87.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klingenberg M. Molecular aspects of the adenine nucleotide carrier from mitochondria. Arch Biochem Biophys. 1989 Apr;270(1):1–14. doi: 10.1016/0003-9861(89)90001-5. [DOI] [PubMed] [Google Scholar]
  12. Liu T. T., Shannon J. C. Measurement of Metabolites Associated with Nonaqueously Isolated Starch Granules from Immature Zea mays L. Endosperm. Plant Physiol. 1981 Mar;67(3):525–529. doi: 10.1104/pp.67.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Möhlmann T., Batz O., Maass U., Neuhaus H. E. Analysis of carbohydrate transport across the envelope of isolated cauliflower-bud amyloplasts. Biochem J. 1995 Apr 15;307(Pt 2):521–526. doi: 10.1042/bj3070521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neuhaus H. E., Batz O., Thom E., Scheibe R. Purification of highly intact plastids from various heterotrophic plant tissues: analysis of enzymic equipment and precursor dependency for starch biosynthesis. Biochem J. 1993 Dec 1;296(Pt 2):395–401. doi: 10.1042/bj2960395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neuhaus H. E., Henrichs G., Scheibe R. Characterization of Glucose-6-Phosphate Incorporation into Starch by Isolated Intact Cauliflower-Bud Plastids. Plant Physiol. 1993 Feb;101(2):573–578. doi: 10.1104/pp.101.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Neuhaus H. E., Schulte N. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L. Biochem J. 1996 Sep 15;318(Pt 3):945–953. doi: 10.1042/bj3180945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Neuhaus H. E., Thom E., Möhlmann T., Steup M., Kampfenkel K. Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L. Plant J. 1997 Jan;11(1):73–82. doi: 10.1046/j.1365-313x.1997.11010073.x. [DOI] [PubMed] [Google Scholar]
  18. Okita T. W. Is there an alternative pathway for starch synthesis? Plant Physiol. 1992 Oct;100(2):560–564. doi: 10.1104/pp.100.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pozueta-Romero J., Frehner M., Viale A. M., Akazawa T. Direct transport of ADPglucose by an adenylate translocator is linked to starch biosynthesis in amyloplasts. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5769–5773. doi: 10.1073/pnas.88.13.5769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Quick W. P., Neuhaus H. E. Evidence for two types of phosphate translocators in sweet-pepper (Capsicum annum L.) fruit chromoplasts. Biochem J. 1996 Nov 15;320(Pt 1):7–10. doi: 10.1042/bj3200007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Quick W. P., Scheibe R., Neuhaus H. E. Induction of Hexose-Phosphate Translocator Activity in Spinach Chloroplasts. Plant Physiol. 1995 Sep;109(1):113–121. doi: 10.1104/pp.109.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schunemann D., Borchert S., Flugge U. I., Heldt H. W. ADP/ATP Translocator from Pea Root Plastids (Comparison with Translocators from Spinach Chloroplasts and Pea Leaf Mitochondria). Plant Physiol. 1993 Sep;103(1):131–137. doi: 10.1104/pp.103.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shannon J. C., Pien F. M., Liu K. C. Nucleotides and Nucleotide Sugars in Developing Maize Endosperms (Synthesis of ADP-Glucose in brittle-1). Plant Physiol. 1996 Mar;110(3):835–843. doi: 10.1104/pp.110.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sullivan T. D., Kaneko Y. The maize brittle 1 gene encodes amyloplast membrane polypeptides. Planta. 1995;196(3):477–484. doi: 10.1007/BF00203647. [DOI] [PubMed] [Google Scholar]
  25. Sullivan T. D., Strelow L. I., Illingworth C. A., Phillips R. L., Nelson O. E., Jr Analysis of maize brittle-1 alleles and a defective Suppressor-mutator-induced mutable allele. Plant Cell. 1991 Dec;3(12):1337–1348. doi: 10.1105/tpc.3.12.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tetlow I. J., Bowsher C. G., Emes M. J. Reconstitution of the hexose phosphate translocator from the envelope membranes of wheat endosperm amyloplasts. Biochem J. 1996 Nov 1;319(Pt 3):717–723. doi: 10.1042/bj3190717. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES