Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 1;324(Pt 2):511–516. doi: 10.1042/bj3240511

pH-dependence for binding a single nitrite ion to each type-2 copper centre in the copper-containing nitrite reductase of Alcaligenes xylosoxidans.

Z H Abraham 1, B E Smith 1, B D Howes 1, D J Lowe 1, R R Eady 1
PMCID: PMC1218459  PMID: 9182711

Abstract

The first quantitative characterization of the interaction of NO2(-) with the Cu-containing dissimilatory nitrite reductase (NiR) of Alcaligenes xylosoxidans using steady-state kinetics, equilibrium gel filtration and EPR spectroscopy is described. Each molecule of this protein consists of three equivalent subunits, each containing a type-1 Cu atom and also a type-2 Cu atom at each subunit interface. Enzyme activity increased in a biphasic manner with decreasing pH, having an optimum at pH 5.2 and a plateau between pH 6.1 and 5.8. Equilibrium gel filtration showed that binding of NO2(-) to the oxidized NiR was also pH-dependent. At pH 7.5, no binding was detectable, but binding was detectable at lower pH values. At pH 5.2, the concentration-dependence for binding of NO2(-) to the enzyme showed that approx. 4.1 NO2(-) ions bound per trimeric NiR molecule. Unexpectedly, NiR deficient in type-2 Cu centres bound 1.3 NO2(-) ions per trimer. When corrected for this binding, a value of 3 NO2(-) ions bound per trimer of NiR, equivalent to the type-2 Cu content. The NO2(-)-induced changes in the EPR parameters of the type-2 Cu centre of the oxidized enzyme showed a similar pH-dependence to that of the activity. Binding constants for NO2(-) at a single type of site, after allowing for the non-specifically bound NO2(-), were 350+/-35 microM (mean+/-S.E.M.) at pH 7.5 and <30 microM at pH 5.2. The apparent Km for NO2(-) with saturating concentrations of dithionite as reductant was 35 microM at pH 7.5, which is 10-fold tighter than for the oxidized enzyme, and is compatible with an ordered mechanism in which the enzyme is reduced before NO2(-) binds.

Full Text

The Full Text of this article is available as a PDF (428.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham Z. H., Lowe D. J., Smith B. E. Purification and characterization of the dissimilatory nitrite reductase from Alcaligenes xylosoxidans subsp. xylosoxidans (N.C.I.M.B. 11015): evidence for the presence of both type 1 and type 2 copper centres. Biochem J. 1993 Oct 15;295(Pt 2):587–593. doi: 10.1042/bj2950587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adman E. T., Godden J. W., Turley S. The structure of copper-nitrite reductase from Achromobacter cycloclastes at five pH values, with NO2- bound and with type II copper depleted. J Biol Chem. 1995 Nov 17;270(46):27458–27474. doi: 10.1074/jbc.270.46.27458. [DOI] [PubMed] [Google Scholar]
  3. Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta. 1995 Dec 12;1232(3):97–173. doi: 10.1016/0005-2728(95)00092-5. [DOI] [PubMed] [Google Scholar]
  4. Dodd F. E., Hasnain S. S., Hunter W. N., Abraham Z. H., Debenham M., Kanzler H., Eldridge M., Eady R. R., Ambler R. P., Smith B. E. Evidence for two distinct azurins in Alcaligenes xylosoxidans (NCIMB 11015): potential electron donors to nitrite reductase. Biochemistry. 1995 Aug 15;34(32):10180–10186. doi: 10.1021/bi00032a011. [DOI] [PubMed] [Google Scholar]
  5. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science. 1991 Jul 26;253(5018):438–442. doi: 10.1126/science.1862344. [DOI] [PubMed] [Google Scholar]
  6. Grossmann J. G., Abraham Z. H., Adman E. T., Neu M., Eady R. R., Smith B. E., Hasnain S. S. X-ray scattering using synchrotron radiation shows nitrite reductase from Achromobacter xylosoxidans to be a trimer in solution. Biochemistry. 1993 Jul 27;32(29):7360–7366. doi: 10.1021/bi00080a005. [DOI] [PubMed] [Google Scholar]
  7. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  8. Howes B. D., Abraham Z. H., Lowe D. J., Brüser T., Eady R. R., Smith B. E. EPR and electron nuclear double resonance (ENDOR) studies show nitrite binding to the type 2 copper centers of the dissimilatory nitrite reductase of Alcaligenes xylosoxidans (NCIMB 11015). Biochemistry. 1994 Mar 22;33(11):3171–3177. doi: 10.1021/bi00177a005. [DOI] [PubMed] [Google Scholar]
  9. Iwasaki H., Noji S., Shidara S. Achromobacter cycloclastes nitrite reductase. The function of copper, amino acid composition, and ESR spectra. J Biochem. 1975 Aug;78(2):355–361. doi: 10.1093/oxfordjournals.jbchem.a130915. [DOI] [PubMed] [Google Scholar]
  10. Jackson M. A., Tiedje J. M., Averill B. A. Evidence for a NO-rebound mechanism for production of N2O from nitrite by the copper-containing nitrite reductase from Achromobacter cycloclastes. FEBS Lett. 1991 Oct 7;291(1):41–44. doi: 10.1016/0014-5793(91)81099-t. [DOI] [PubMed] [Google Scholar]
  11. Kakutani T., Watanabe H., Arima K., Beppu T. Purification and properties of a copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes faecalis strain S-6. J Biochem. 1981 Feb;89(2):453–461. doi: 10.1093/oxfordjournals.jbchem.a133220. [DOI] [PubMed] [Google Scholar]
  12. Kukimoto M., Nishiyama M., Murphy M. E., Turley S., Adman E. T., Horinouchi S., Beppu T. X-ray structure and site-directed mutagenesis of a nitrite reductase from Alcaligenes faecalis S-6: roles of two copper atoms in nitrite reduction. Biochemistry. 1994 May 3;33(17):5246–5252. doi: 10.1021/bi00183a030. [DOI] [PubMed] [Google Scholar]
  13. MacGregor C. H. Isolation and characterization of nitrate reductase from Escherichia coli. Methods Enzymol. 1978;53:347–355. doi: 10.1016/s0076-6879(78)53040-1. [DOI] [PubMed] [Google Scholar]
  14. Masuko M., Iwasaki H., Sakurai T., Suzuki S., Nakahara A. Characterization of nitrite reductase from a denitrifier, Alcaligenes sp. NCIB 11015. A novel copper protein. J Biochem. 1984 Aug;96(2):447–454. doi: 10.1093/oxfordjournals.jbchem.a134856. [DOI] [PubMed] [Google Scholar]
  15. Strange R. W., Dodd F. E., Abraham Z. H., Grossmann J. G., Brüser T., Eady R. R., Smith B. E., Hasnain S. S. The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase. Nat Struct Biol. 1995 Apr;2(4):287–292. doi: 10.1038/nsb0495-287. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES