Abstract
A systematic analysis of the peptide sequences and lengths of several homologues of bioactive peptides and of a number of quenched-fluorescence (qf) opioid- and bradykinin-related peptides was performed to determine the main features leading the oligopeptides to hydrolysis by the recombinant rat testis thimet oligopeptidase (EC 3.4.24.15). The results indicate that a minimum substrate length of six amino acids is required and that among the oligopeptides six to thirteen amino acid residues long, their susceptibility as substrates is highly variable. Thimet oligopeptidase was able to hydrolyse, with similar catalytic efficiency, peptide bonds having hydrophobic or hydrophilic amino acids as well as proline in the P1 position of peptides, ranging from a minimum of six to a maximum of approximately thirteen amino acid residues. An intriguing observation was the shift of the cleavage site, at a Leu-Arg bond in qf dynorphin-(2-8) [qf-Dyn2-8; Abz-GGFLRRV-EDDnp, where Abz stands for o-aminobenzoyl and EDDnp for N-(2,4-dinitrophenyl)ethylenediamine], to Arg-Arg in qf-Dyn2-8Q, in which Gln was substituted for Val at its C-terminus. Similarly, a cleavage site displacement was also observed with the hydrolysis of the internally quenched-fluorescence bradykinin analogues containing Gln at the C-terminal position, namely Abz-RPPGFSPFR-EDDnp and Abz-GFSPFR-EDDnp are cleaved at the Phe-Ser bond, but Abz-RPPGFSPFRQ-EDDnp and Abz-GFSPFRQ-EDDnp are cleaved at the Pro-Phe bond.
Full Text
The Full Text of this article is available as a PDF (210.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett A. J., Brown M. A., Dando P. M., Knight C. G., McKie N., Rawlings N. D., Serizawa A. Thimet oligopeptidase and oligopeptidase M or neurolysin. Methods Enzymol. 1995;248:529–556. doi: 10.1016/0076-6879(95)48034-x. [DOI] [PubMed] [Google Scholar]
- Barrett A. J., Rawlings N. D. Oligopeptidases, and the emergence of the prolyl oligopeptidase family. Biol Chem Hoppe Seyler. 1992 Jul;373(7):353–360. doi: 10.1515/bchm3.1992.373.2.353. [DOI] [PubMed] [Google Scholar]
- Bone R., Agard D. A. Mutational remodeling of enzyme specificity. Methods Enzymol. 1991;202:643–671. doi: 10.1016/0076-6879(91)02030-d. [DOI] [PubMed] [Google Scholar]
- Bone R., Silen J. L., Agard D. A. Structural plasticity broadens the specificity of an engineered protease. Nature. 1989 May 18;339(6221):191–195. doi: 10.1038/339191a0. [DOI] [PubMed] [Google Scholar]
- Camargo A. C., Caldo H., Reis M. L. Susceptibility of a peptide derived from bradykinin to hydrolysis by brain endo-oligopeptidases and pancreatic proteinases. J Biol Chem. 1979 Jun 25;254(12):5304–5307. [PubMed] [Google Scholar]
- Camargo A. C., Gomes M. D., Toffoletto O., Ribeiro M. J., Ferro E. S., Fernandes B. L., Suzuki K., Sasaki Y., Juliano L. Structural requirements of bioactive peptides for interaction with endopeptidase 22.19. Neuropeptides. 1994 Apr;26(4):281–287. doi: 10.1016/0143-4179(94)90083-3. [DOI] [PubMed] [Google Scholar]
- Camargo A. C., Oliveira E. B., Toffoletto O., Metters K. M., Rossier J. Brain endo-oligopeptidase A, a putative enkephalin converting enzyme. J Neurochem. 1987 Apr;48(4):1258–1263. doi: 10.1111/j.1471-4159.1987.tb05655.x. [DOI] [PubMed] [Google Scholar]
- Camargo A. C., Shapanka R., Greene L. J. Preparation, assay, and partial characterization of a neutral endopeptidase from rabbit brain. Biochemistry. 1973 Apr 24;12(9):1838–1844. doi: 10.1021/bi00733a028. [DOI] [PubMed] [Google Scholar]
- Carvalho K. M., Camargo A. C. Purification of rabbit brain endooligopeptidases and preparation of anti-enzyme antibodies. Biochemistry. 1981 Dec 8;20(25):7082–7088. doi: 10.1021/bi00528a005. [DOI] [PubMed] [Google Scholar]
- Checler F., Barelli H., Dauch P., Dive V., Vincent B., Vincent J. P. Neurolysin: purification and assays. Methods Enzymol. 1995;248:593–614. doi: 10.1016/0076-6879(95)48038-2. [DOI] [PubMed] [Google Scholar]
- De Camargo A. C., Da Fonseca M. J., Caldo H., De Morais Carvalho K. Influence of the carboxyl terminus of luteinizing hormone-releasing hormone and bradykinin on hydrolysis by brain endo-oligopeptidases. J Biol Chem. 1982 Aug 25;257(16):9265–9267. [PubMed] [Google Scholar]
- Engelhard V. H. Structure of peptides associated with MHC class I molecules. Curr Opin Immunol. 1994 Feb;6(1):13–23. doi: 10.1016/0952-7915(94)90028-0. [DOI] [PubMed] [Google Scholar]
- Heemels M. T., Ploegh H. Generation, translocation, and presentation of MHC class I-restricted peptides. Annu Rev Biochem. 1995;64:463–491. doi: 10.1146/annurev.bi.64.070195.002335. [DOI] [PubMed] [Google Scholar]
- Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
- Juliano L., Chagas J. R., Hirata I. Y., Carmona E., Sucupira M., Oliveira E. S., Oliveira E. B., Camargo A. C. A selective assay for endooligopeptidase A based on the cleavage of fluorogenic substrate structurally related to enkephalin. Biochem Biophys Res Commun. 1990 Dec 14;173(2):647–652. doi: 10.1016/s0006-291x(05)80084-1. [DOI] [PubMed] [Google Scholar]
- Knight C. G., Dando P. M., Barrett A. J. Thimet oligopeptidase specificity: evidence of preferential cleavage near the C-terminus and product inhibition from kinetic analysis of peptide hydrolysis. Biochem J. 1995 May 15;308(Pt 1):145–150. doi: 10.1042/bj3080145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lew R. A., Tetaz T. J., Glucksman M. J., Roberts J. L., Smith A. I. Evidence for a two-step mechanism of gonadotropin-releasing hormone metabolism by prolyl endopeptidase and metalloendopeptidase EC 3.4.24.15 in ovine hypothalamic extracts. J Biol Chem. 1994 Apr 29;269(17):12626–12632. [PubMed] [Google Scholar]
- McKie N., Dando P. M., Brown M. A., Barrett A. J. Rat thimet oligopeptidase: large-scale expression in Escherichia coli and characterization of the recombinant enzyme. Biochem J. 1995 Jul 1;309(Pt 1):203–207. doi: 10.1042/bj3090203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami M. Critical amino acids responsible for converting specificities of proteins and for enhancing enzyme evolution are located around beta-turn potentials: data-based prediction. J Protein Chem. 1993 Dec;12(6):783–789. doi: 10.1007/BF01024937. [DOI] [PubMed] [Google Scholar]
- Nakaie C. R., Oliveira M. C., Juliano L., Paiva A. C. Inhibition of renin by conformationally restricted analogues of angiotensinogen. Biochem J. 1982 Jul 1;205(1):43–47. doi: 10.1042/bj2050043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliveira E. B., Martins A. R., Camargo A. C. Isolation of brain endopeptidases: influence of size and sequence of substrates structurally related to bradykinin. Biochemistry. 1976 May 4;15(9):1967–1974. doi: 10.1021/bi00654a026. [DOI] [PubMed] [Google Scholar]
- Oliveira E. S., Leite P. E., Spillantini M. G., Camargo A. C., Hunt S. P. Localization of endo-oligopeptidase (EC 3.4.22.19) in the rat nervous tissue. J Neurochem. 1990 Oct;55(4):1114–1121. doi: 10.1111/j.1471-4159.1990.tb03113.x. [DOI] [PubMed] [Google Scholar]
- Oliveira M. C., Juliano L., Paiva A. C. Conformations of synthetic tetradecapeptide renin substrate and of angiotensin I in aqueous solution. Biochemistry. 1977 Jun 14;16(12):2606–2611. doi: 10.1021/bi00631a005. [DOI] [PubMed] [Google Scholar]
- Pierotti A., Dong K. W., Glucksman M. J., Orlowski M., Roberts J. L. Molecular cloning and primary structure of rat testes metalloendopeptidase EC 3.4.24.15. Biochemistry. 1990 Nov 13;29(45):10323–10329. doi: 10.1021/bi00497a006. [DOI] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Serizawa A., Dando P. M., Barrett A. J. Characterization of a mitochondrial metallopeptidase reveals neurolysin as a homologue of thimet oligopeptidase. J Biol Chem. 1995 Feb 3;270(5):2092–2098. doi: 10.1074/jbc.270.5.2092. [DOI] [PubMed] [Google Scholar]
- Tisljar U. Thimet oligopeptidase--a review of a thiol dependent metallo-endopeptidase also known as Pz-peptidase endopeptidase 24.15 and endo-oligopeptidase. Biol Chem Hoppe Seyler. 1993 Feb;374(2):91–100. [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]