Abstract
The Yersinia pestis protein Caf1M is a typical representative of a subfamily of periplasmic molecular chaperones with characteristic structural and functional features, one of which is the location of two conserved cysteine residues close to the putative binding pocket. We show that these residues form a disulphide bond, the reduction and alkylation of which significantly increases the dissociation constant of the Caf1M-Caf1 (where Caf 1 is a polypeptide subunit of the capsule) complex [from a Kd of (4.77+/-0.50)x10(-9) M for the intact protein to one of (3.68+/-0.68)x10(-8) M for the modified protein]. The importance of the disulphide bond for the formation of functional Caf1M in vivo was demonstrated using an Escherichia coli dsbA mutant carrying the Y. pestis f1 operon. In accordance with the CD and fluorescence measurements, the disulphide bond is not important for maintenance of the overall structure of the Caf1M molecule, but would appear to affect the fine structural properties of the subunit binding site. A three-dimensional model of the Caf1M-Caf1 complex was designed based on the published crystal structure of PapD (a chaperone required for Pap pili assembly) complexed with a peptide corresponding to the C-terminus of the papG subunit. In the model the disulphide bond is in close proximity to the invariant Caf1M Arg-23 and Lys-142 residues that are assumed to anchor the C-terminal group of the subunit. The importance of this characteristic disulphide bond for the orchestration of the binding site and subunit binding, as well as for the folding of the protein in vivo, is likely to be a common feature of this subfamily of Caf1M-like chaperones. A possible model for the role of the disulphide bond in Caf1 assembly is discussed.
Full Text
The Full Text of this article is available as a PDF (591.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bardwell J. C. Building bridges: disulphide bond formation in the cell. Mol Microbiol. 1994 Oct;14(2):199–205. doi: 10.1111/j.1365-2958.1994.tb01281.x. [DOI] [PubMed] [Google Scholar]
- Bayer E. A., Zalis M. G., Wilchek M. 3-(N-Maleimido-propionyl)biocytin: a versatile thiol-specific biotinylating reagent. Anal Biochem. 1985 Sep;149(2):529–536. doi: 10.1016/0003-2697(85)90609-8. [DOI] [PubMed] [Google Scholar]
- Dodson K. W., Jacob-Dubuisson F., Striker R. T., Hultgren S. J. Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3670–3674. doi: 10.1073/pnas.90.8.3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galyov E. E., Karlishev A. V., Chernovskaya T. V., Dolgikh D. A., Smirnov OYu, Volkovoy K. I., Abramov V. M., Zav'yalov V. P. Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of caf1M gene having homology with the chaperone protein PapD of Escherichia coli. FEBS Lett. 1991 Jul 29;286(1-2):79–82. doi: 10.1016/0014-5793(91)80945-y. [DOI] [PubMed] [Google Scholar]
- Galyov E. E., Smirnov OYu, Karlishev A. V., Volkovoy K. I., Denesyuk A. I., Nazimov I. V., Rubtsov K. S., Abramov V. M., Dalvadyanz S. M., Zav'yalov V. P. Nucleotide sequence of the Yersinia pestis gene encoding F1 antigen and the primary structure of the protein. Putative T and B cell epitopes. FEBS Lett. 1990 Dec 17;277(1-2):230–232. doi: 10.1016/0014-5793(90)80852-a. [DOI] [PubMed] [Google Scholar]
- Holmgren A., Bränden C. I. Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature. 1989 Nov 16;342(6247):248–251. doi: 10.1038/342248a0. [DOI] [PubMed] [Google Scholar]
- Holmgren A., Kuehn M. J., Brändén C. I., Hultgren S. J. Conserved immunoglobulin-like features in a family of periplasmic pilus chaperones in bacteria. EMBO J. 1992 Apr;11(4):1617–1622. doi: 10.1002/j.1460-2075.1992.tb05207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hung D. L., Knight S. D., Woods R. M., Pinkner J. S., Hultgren S. J. Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J. 1996 Aug 1;15(15):3792–3805. [PMC free article] [PubMed] [Google Scholar]
- Jacob-Dubuisson F., Kuehn M., Hultgren S. J. A novel secretion apparatus for the assembly of adhesive bacterial pili. Trends Microbiol. 1993 May;1(2):50–55. doi: 10.1016/0966-842x(93)90032-m. [DOI] [PubMed] [Google Scholar]
- Jacob-Dubuisson F., Pinkner J., Xu Z., Striker R., Padmanhaban A., Hultgren S. J. PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11552–11556. doi: 10.1073/pnas.91.24.11552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karlyshev A. V., Galyov E. E., Smirnov OYu, Guzayev A. P., Abramov V. M., Zav'yalov V. P. A new gene of the f1 operon of Y. pestis involved in the capsule biogenesis. FEBS Lett. 1992 Feb 3;297(1-2):77–80. doi: 10.1016/0014-5793(92)80331-a. [DOI] [PubMed] [Google Scholar]
- Kuehn M. J., Ogg D. J., Kihlberg J., Slonim L. N., Flemmer K., Bergfors T., Hultgren S. J. Structural basis of pilus subunit recognition by the PapD chaperone. Science. 1993 Nov 19;262(5137):1234–1241. doi: 10.1126/science.7901913. [DOI] [PubMed] [Google Scholar]
- LAURELL C. B. ANTIGEN-ANTIBODY CROSSED ELECTROPHORESIS. Anal Biochem. 1965 Feb;10:358–361. doi: 10.1016/0003-2697(65)90278-2. [DOI] [PubMed] [Google Scholar]
- Murray J. S., Brown J. C. Measurement of association constants in ELISA. Reactions between solid-phase antibody and fluid-phase biotinylated antigen. J Immunol Methods. 1990 Feb 20;127(1):25–28. doi: 10.1016/0022-1759(90)90336-t. [DOI] [PubMed] [Google Scholar]
- Padlan E. A. Anatomy of the antibody molecule. Mol Immunol. 1994 Feb;31(3):169–217. doi: 10.1016/0161-5890(94)90001-9. [DOI] [PubMed] [Google Scholar]
- Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
- Slonim L. N., Pinkner J. S., Brändén C. I., Hultgren S. J. Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly. EMBO J. 1992 Dec;11(13):4747–4756. doi: 10.1002/j.1460-2075.1992.tb05580.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zapun A., Missiakas D., Raina S., Creighton T. E. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry. 1995 Apr 18;34(15):5075–5089. doi: 10.1021/bi00015a019. [DOI] [PubMed] [Google Scholar]
- Zav'yalov V. P., Chernovskaya T. V., Navolotskaya E. V., Karlyshev A. V., MacIntyre S., Vasiliev A. M., Abramov V. M. Specific high affinity binding of human interleukin 1 beta by Caf1A usher protein of Yersinia pestis. FEBS Lett. 1995 Aug 28;371(1):65–68. doi: 10.1016/0014-5793(95)00878-d. [DOI] [PubMed] [Google Scholar]
- Zav'yalov V. P., Zav'yalova G. A., Denesyuk A. I., Gaestel M., Korpela T. Structural and functional homology between periplasmic bacterial molecular chaperones and small heat shock proteins. FEMS Immunol Med Microbiol. 1995 Jul;11(4):265–272. doi: 10.1111/j.1574-695X.1995.tb00155.x. [DOI] [PubMed] [Google Scholar]
- Zav'yalov V. P., Zav'yalova G. A., Denesyuk A. I., Korpela T. Modelling of steric structure of a periplasmic molecular chaperone Caf1M of Yersinia pestis, a prototype member of a subfamily with characteristic structural and functional features. FEMS Immunol Med Microbiol. 1995 Mar;11(1):19–24. doi: 10.1111/j.1574-695X.1995.tb00074.x. [DOI] [PubMed] [Google Scholar]
- Zav'yalov V., Denesyuk A., Zav'yalova G., Korpela T. Molecular modeling of the steric structure of the envelope F1 antigen of Yersinia pestis. Immunol Lett. 1995 Feb;45(1-2):19–22. doi: 10.1016/0165-2478(94)00194-v. [DOI] [PubMed] [Google Scholar]