Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 1;324(Pt 2):611–617. doi: 10.1042/bj3240611

Transcriptional activity of the human tissue inhibitor of metalloproteinases 1 (TIMP-1) gene in fibroblasts involves elements in the promoter, exon 1 and intron 1.

I M Clark 1, A D Rowan 1, D R Edwards 1, T Bech-Hansen 1, D A Mann 1, M J Bahr 1, T E Cawston 1
PMCID: PMC1218473  PMID: 9182725

Abstract

The active forms of all of the matrix metalloproteinases (MMPs) are inhibited by a family of specific inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Inhibition represents a major level of control of MMP activity. A detailed knowledge of the mechanisms controlling TIMP gene expression is therefore important. We have isolated a genomic clone of the human TIMP-1 gene. A 3 kbp XbaI fragment has been sequenced; this fragment contains 1718 bp 5' flanking sequences, exon 1, a 929 bp intron 1 and part of exon 2. Computer analysis reveals 10 consensus sequences for Sp1, six for activating protein 1 (AP-1), six for polyoma enhancer A3 (PEA3), 12 for AP-2 and five CCAAT boxes. The region hybridizing with a murine TIMP-1 promoter fragment has been subcloned and analysed further. RNase protection identifies six transcription start points, making exon 1 up to 48 bp in length. Transient transfection of promoter-chloramphenicol O-acetyltransferase reporter constructs into primary human connective tissue fibroblasts shows that a 904 bp fragment that hybridizes to a murine TIMP-1 promoter fragment contains a functional promoter. Constructs of -738/+95 to -194/+21 are inducible with serum or phorbol ester to a similar extent to the endogenous TIMP-1 gene. These results and further mapping with 5' deletion mutants from the -738/+95 region have demonstrated that an AP-1 site at -92/-86 is essential for basal expression of the gene. Point mutations within this region have further confirmed the role of this site, along with a more minor role for a neighbouring PEA3 site, in basal expression. Deletions from the 3' end also implicate a region across the exon 1/intron 1 boundary and especially +21 to +58 in basal expression. The +21/+58 region contains a putative binding site for the transcription factor leader-binding protein 1 (LBP-1). Gel-shift analysis shows that protein binds specifically to this region, but competition studies suggest that it is unlikely to be LBP-1.

Full Text

The Full Text of this article is available as a PDF (671.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bugno M., Graeve L., Gatsios P., Koj A., Heinrich P. C., Travis J., Kordula T. Identification of the interleukin-6/oncostatin M response element in the rat tissue inhibitor of metalloproteinases-1 (TIMP-1) promoter. Nucleic Acids Res. 1995 Dec 25;23(24):5041–5047. doi: 10.1093/nar/23.24.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Campbell C. E., Flenniken A. M., Skup D., Williams B. R. Identification of a serum- and phorbol ester-responsive element in the murine tissue inhibitor of metalloproteinase gene. J Biol Chem. 1991 Apr 15;266(11):7199–7206. [PubMed] [Google Scholar]
  3. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark I. M., Powell L. K., Cawston T. E. Tissue inhibitor of metalloproteinases (TIMP-1) stimulates the secretion of collagenase from human skin fibroblasts. Biochem Biophys Res Commun. 1994 Sep 15;203(2):874–880. doi: 10.1006/bbrc.1994.2264. [DOI] [PubMed] [Google Scholar]
  5. Coulombe B., Ponton A., Daigneault L., Williams B. R., Skup D. Presence of transcription regulatory elements within an intron of the virus-inducible murine TIMP gene. Mol Cell Biol. 1988 Aug;8(8):3227–3234. doi: 10.1128/mcb.8.8.3227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Clerck Y. A., Darville M. I., Eeckhout Y., Rousseau G. G. Characterization of the promoter of the gene encoding human tissue inhibitor of metalloproteinases-2 (TIMP-2). Gene. 1994 Feb 25;139(2):185–191. doi: 10.1016/0378-1119(94)90753-6. [DOI] [PubMed] [Google Scholar]
  7. Denhardt D. T., Feng B., Edwards D. R., Cocuzzi E. T., Malyankar U. M. Tissue inhibitor of metalloproteinases (TIMP, aka EPA): structure, control of expression and biological functions. Pharmacol Ther. 1993 Sep;59(3):329–341. doi: 10.1016/0163-7258(93)90074-n. [DOI] [PubMed] [Google Scholar]
  8. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edwards D. R., Murphy G., Reynolds J. J., Whitham S. E., Docherty A. J., Angel P., Heath J. K. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J. 1987 Jul;6(7):1899–1904. doi: 10.1002/j.1460-2075.1987.tb02449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edwards D. R., Rocheleau H., Sharma R. R., Wills A. J., Cowie A., Hassell J. A., Heath J. K. Involvement of AP1 and PEA3 binding sites in the regulation of murine tissue inhibitor of metalloproteinases-1 (TIMP-1) transcription. Biochim Biophys Acta. 1992 Nov 15;1171(1):41–55. doi: 10.1016/0167-4781(92)90138-p. [DOI] [PubMed] [Google Scholar]
  11. Flenniken A. M., Williams B. R. Developmental expression of the endogenous TIMP gene and a TIMP-lacZ fusion gene in transgenic mice. Genes Dev. 1990 Jul;4(7):1094–1106. doi: 10.1101/gad.4.7.1094. [DOI] [PubMed] [Google Scholar]
  12. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  13. Logan S. K., Garabedian M. J., Campbell C. E., Werb Z. Synergistic transcriptional activation of the tissue inhibitor of metalloproteinases-1 promoter via functional interaction of AP-1 and Ets-1 transcription factors. J Biol Chem. 1996 Jan 12;271(2):774–782. doi: 10.1074/jbc.271.2.774. [DOI] [PubMed] [Google Scholar]
  14. Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maier R., Ganu V., Lotz M. Interleukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases. J Biol Chem. 1993 Oct 15;268(29):21527–21532. [PubMed] [Google Scholar]
  16. Matrisian L. M. The matrix-degrading metalloproteinases. Bioessays. 1992 Jul;14(7):455–463. doi: 10.1002/bies.950140705. [DOI] [PubMed] [Google Scholar]
  17. Ponton A., Coulombe B., Steyaert A., Williams B. R., Skup D. Basal expression of the gene (TIMP) encoding the murine tissue inhibitor of metalloproteinases is mediated through AP1- and CCAAT-binding factors. Gene. 1992 Jul 15;116(2):187–194. doi: 10.1016/0378-1119(92)90515-q. [DOI] [PubMed] [Google Scholar]
  18. Richards C. D., Shoyab M., Brown T. J., Gauldie J. Selective regulation of metalloproteinase inhibitor (TIMP-1) by oncostatin M in fibroblasts in culture. J Immunol. 1993 Jun 15;150(12):5596–5603. [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sato T., Ito A., Mori Y. Interleukin 6 enhances the production of tissue inhibitor of metalloproteinases (TIMP) but not that of matrix metalloproteinases by human fibroblasts. Biochem Biophys Res Commun. 1990 Jul 31;170(2):824–829. doi: 10.1016/0006-291x(90)92165-v. [DOI] [PubMed] [Google Scholar]
  21. Uchijima M., Sato H., Fujii M., Seiki M. Tax proteins of human T-cell leukemia virus type 1 and 2 induce expression of the gene encoding erythroid-potentiating activity (tissue inhibitor of metalloproteinases-1, TIMP-1). J Biol Chem. 1994 May 27;269(21):14946–14950. [PubMed] [Google Scholar]
  22. Vincenti M. P., Clark I. M., Brinckerhoff C. E. Using inhibitors of metalloproteinases to treat arthritis. Easier said than done? Arthritis Rheum. 1994 Aug;37(8):1115–1126. doi: 10.1002/art.1780370802. [DOI] [PubMed] [Google Scholar]
  23. Wick M., Härönen R., Mumberg D., Bürger C., Olsen B. R., Budarf M. L., Apte S. S., Müller R. Structure of the human TIMP-3 gene and its cell cycle-regulated promoter. Biochem J. 1995 Oct 15;311(Pt 2):549–554. doi: 10.1042/bj3110549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wright J. K., Clark I. M., Cawston T. E., Hazleman B. L. The secretion of the tissue inhibitor of metalloproteinases (TIMP) by human synovial fibroblasts is modulated by all-trans-retinoic acid. Biochim Biophys Acta. 1991 Dec 3;1133(1):25–30. doi: 10.1016/0167-4889(91)90237-r. [DOI] [PubMed] [Google Scholar]
  25. Yoon J. B., Li G., Roeder R. G. Characterization of a family of related cellular transcription factors which can modulate human immunodeficiency virus type 1 transcription in vitro. Mol Cell Biol. 1994 Mar;14(3):1776–1785. doi: 10.1128/mcb.14.3.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES