Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 1;324(Pt 2):653–658. doi: 10.1042/bj3240653

Interleukin 1-induced calcium signalling in chondrocytes requires focal adhesions.

L Luo 1, T Cruz 1, C McCulloch 1
PMCID: PMC1218478  PMID: 9182730

Abstract

The cytokine interleukin 1 (IL-1) is an important mediator of connective-tissue destruction in arthritic joints but the mechanisms by which IL-1 mediates signal transduction in chondrocytes is poorly understood. Previous results have indicated that IL-1 receptors co-localize with focal adhesions [Qwarnstrom, Page, Gillis and Dower (1988) J. Biol. Chem. 263, 8261-8269], discrete adhesive domains of cells that function in cell attachment and possibly in signal transduction. We have determined whether focal adhesions restrict IL-1-induced Ca2+ signalling in primary cultures of bovine chondrocytes. In cells grown for 24 h on fibronectin, the basal intracellular Ca2+ ion concentration ([Ca2+]i) was 100+/-3 nM. Optimal increases of [Ca2+]i above baseline were induced by 10 nM IL-1 (183+/-30 nM above baseline). There was no significant difference between cells plated on fibronectin or type II collagen (P>0.2; 233+/-90 nM above baseline). Ca2+ transients were significantly decreased by the inclusion of 0.5 mM EGTA in the bathing buffer (74+/-11 nM above baseline), and 1 microM thapsigargin completely blocked Ca2+ transients. Cells plated on poly-(l-lysine) or suspended cells showed no Ca2+ increases, whereas cells grown on fibronectin exhibited IL-1-induced Ca2+ responses that corresponded temporally to the time-dependent cell spreading after plating on fibronectin. Cells plated on poly-(l-lysine) and incubated with fibronectin-coated beads exhibited vinculin staining in association with the beads. In identical cell preparations, IL-1 induced a 136+/-39 nM increase of [Ca2+]i above baseline in response to 10 nM IL-1beta. There were no IL-1-induced Ca2+ increases when cells on poly-(l-lysine) were incubated with fibronectin-coated beads for only 15 min at 37 degrees C, in cells maintained for 3 h at 4 degrees C, in cells incubated with BSA beads for 3 h at 37 degrees C, or in cells pretreated with cytochalasin D. Labelling of IL-1 receptors with 125I-IL-1beta showed 3-fold more specific labelling of focal adhesion complexes in cells incubated with fibronectin-coated beads compared with cells incubated with BSA-coated beads, indicating that IL-1 receptor binding or the number of IL-1 receptors was increased in focal adhesions. These results indicate that, in chondrocytes, IL-1-induced Ca2+ signalling is dependent on focal adhesion formation and that focal adhesions recruit IL-1 receptors by redistribution in the cell membrane.

Full Text

The Full Text of this article is available as a PDF (384.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham R. T., Ho S. N., Barna T. J., McKean D. J. Transmembrane signaling during interleukin 1-dependent T cell activation. Interactions of signal 1- and signal 2-type mediators with the phosphoinositide-dependent signal transduction mechanism. J Biol Chem. 1987 Feb 25;262(6):2719–2728. [PubMed] [Google Scholar]
  2. Arner E. C., Pratta M. A. Independent effects of interleukin-1 on proteoglycan breakdown, proteoglycan synthesis, and prostaglandin E2 release from cartilage in organ culture. Arthritis Rheum. 1989 Mar;32(3):288–297. doi: 10.1002/anr.1780320310. [DOI] [PubMed] [Google Scholar]
  3. Arora P. D., Ma J., Min W., Cruz T., McCulloch C. A. Interleukin-1-induced calcium flux in human fibroblasts is mediated through focal adhesions. J Biol Chem. 1995 Mar 17;270(11):6042–6049. doi: 10.1074/jbc.270.11.6042. [DOI] [PubMed] [Google Scholar]
  4. Benton H. P., Tyler J. A. Inhibition of cartilage proteoglycan synthesis by interleukin I. Biochem Biophys Res Commun. 1988 Jul 15;154(1):421–428. doi: 10.1016/0006-291x(88)90703-6. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  6. Bocquet J., Daireaux M., Langris M., Jouis V., Pujol J. P., Beliard R., Loyau G. Effect of a interleukin-1 like factor (mononuclear cell factor) on proteoglycan synthesis in cultured human articular chondrocytes. Biochem Biophys Res Commun. 1986 Jan 29;134(2):539–549. doi: 10.1016/s0006-291x(86)80454-5. [DOI] [PubMed] [Google Scholar]
  7. Bouchelouche P. N., Reimert C., Bendtzen K. Effects of natural and recombinant interleukin-1 alpha and -beta on cytosolic free calcium in human and murine fibroblasts. Leukemia. 1988 Oct;2(10):691–696. [PubMed] [Google Scholar]
  8. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  9. Corkey B. E., Geschwind J. F., Deeney J. T., Hale D. E., Douglas S. D., Kilpatrick L. Ca2+ responses to interleukin 1 and tumor necrosis factor in cultured human skin fibroblasts. Possible implications for Reye syndrome. J Clin Invest. 1991 Mar;87(3):778–786. doi: 10.1172/JCI115081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cruz T. F., Mills G., Pritzker K. P., Kandel R. A. Inverse correlation between tyrosine phosphorylation and collagenase production in chondrocytes. Biochem J. 1990 Aug 1;269(3):717–721. doi: 10.1042/bj2690717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dinarello C. A. Biologic basis for interleukin-1 in disease. Blood. 1996 Mar 15;87(6):2095–2147. [PubMed] [Google Scholar]
  12. Dingle J. T., Davies M. E., Mativi B. Y., Middleton H. F. Immunohistological identification of interleukin-1 activated chondrocytes. Ann Rheum Dis. 1990 Nov;49(11):889–892. doi: 10.1136/ard.49.11.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dodge G. R., Poole A. R. Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest. 1989 Feb;83(2):647–661. doi: 10.1172/JCI113929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dower S. K., Kronheim S. R., March C. J., Conlon P. J., Hopp T. P., Gillis S., Urdal D. L. Detection and characterization of high affinity plasma membrane receptors for human interleukin 1. J Exp Med. 1985 Aug 1;162(2):501–515. doi: 10.1084/jem.162.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dower S. K., Qwarnstrom E. E., Page R. C., Blanton R. A., Kupper T. S., Raines E., Ross R., Sims J. E. Biology of the interleukin-1 receptor. J Invest Dermatol. 1990 Jun;94(6 Suppl):68S–73S. doi: 10.1111/1523-1747.ep12875154. [DOI] [PubMed] [Google Scholar]
  16. Dower S. K., Sims J. E., Cerretti D. P., Bird T. A. The interleukin-1 system: receptors, ligands and signals. Chem Immunol. 1992;51:33–64. [PubMed] [Google Scholar]
  17. Georgilis K., Schaefer C., Dinarello C. A., Klempner M. S. Human recombinant interleukin 1 beta has no effect on intracellular calcium or on functional responses of human neutrophils. J Immunol. 1987 May 15;138(10):3403–3407. [PubMed] [Google Scholar]
  18. Hauselmann H. J., Flechtenmacher J., Michal L., Thonar E. J., Shinmei M., Kuettner K. E., Aydelotte M. B. The superficial layer of human articular cartilage is more susceptible to interleukin-1-induced damage than the deeper layers. Arthritis Rheum. 1996 Mar;39(3):478–488. doi: 10.1002/art.1780390316. [DOI] [PubMed] [Google Scholar]
  19. Howarth D., Pritzker K. P., Cruz T. F., Kandel R. A. Calcium ionophore A23187 stimulates production of a 144 kDa gelatinase. J Rheumatol. 1993 Jan;20(1):97–101. [PubMed] [Google Scholar]
  20. Howell D. S. Pathogenesis of osteoarthritis. Am J Med. 1986 Apr 28;80(4B):24–28. doi: 10.1016/0002-9343(86)90075-6. [DOI] [PubMed] [Google Scholar]
  21. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  22. Juliano R. L., Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993 Feb;120(3):577–585. doi: 10.1083/jcb.120.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kuettner K. E., Pauli B. U., Gall G., Memoli V. A., Schenk R. K. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. J Cell Biol. 1982 Jun;93(3):743–750. doi: 10.1083/jcb.93.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee W., Sodek J., McCulloch C. A. Role of integrins in regulation of collagen phagocytosis by human fibroblasts. J Cell Physiol. 1996 Sep;168(3):695–704. doi: 10.1002/(SICI)1097-4652(199609)168:3<695::AID-JCP22>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  25. Lipfert L., Haimovich B., Schaller M. D., Cobb B. S., Parsons J. T., Brugge J. S. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol. 1992 Nov;119(4):905–912. doi: 10.1083/jcb.119.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lo Y. Y., Cruz T. F. Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem. 1995 May 19;270(20):11727–11730. doi: 10.1074/jbc.270.20.11727. [DOI] [PubMed] [Google Scholar]
  27. Lowenthal J. W., MacDonald H. R. Binding and internalization of interleukin 1 by T cells. Direct evidence for high- and low-affinity classes of interleukin 1 receptor. J Exp Med. 1986 Oct 1;164(4):1060–1074. doi: 10.1084/jem.164.4.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matsushima K., Akahoshi T., Yamada M., Furutani Y., Oppenheim J. J. Properties of a specific interleukin 1 (IL 1) receptor on human Epstein Barr virus-transformed B lymphocytes: identity of the receptor for IL 1-alpha and IL 1-beta. J Immunol. 1986 Jun 15;136(12):4496–4502. [PubMed] [Google Scholar]
  29. Matsushima K., Shiroo M., Kung H. F., Copeland T. D. Purification and characterization of a cytosolic 65-kilodalton phosphoprotein in human leukocytes whose phosphorylation is augmented by stimulation with interleukin 1. Biochemistry. 1988 May 17;27(10):3765–3770. doi: 10.1021/bi00410a037. [DOI] [PubMed] [Google Scholar]
  30. Pacifici R., Civitelli R., Rifas L., Halstead L., Avioli L. V. Does interleukin-1 affect intracellular calcium in osteoblast-like cells (UMR-106)? J Bone Miner Res. 1988 Feb;3(1):107–111. doi: 10.1002/jbmr.5650030116. [DOI] [PubMed] [Google Scholar]
  31. Plopper G., Ingber D. E. Rapid induction and isolation of focal adhesion complexes. Biochem Biophys Res Commun. 1993 Jun 15;193(2):571–578. doi: 10.1006/bbrc.1993.1662. [DOI] [PubMed] [Google Scholar]
  32. Qwarnstrom E. E., Page R. C., Gillis S., Dower S. K. Binding, internalization, and intracellular localization of interleukin-1 beta in human diploid fibroblasts. J Biol Chem. 1988 Jun 15;263(17):8261–8269. [PubMed] [Google Scholar]
  33. Qwarnström E. E., MacFarlane S. A., Page R. C., Dower S. K. Interleukin 1 beta induces rapid phosphorylation and redistribution of talin: a possible mechanism for modulation of fibroblast focal adhesion. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1232–1236. doi: 10.1073/pnas.88.4.1232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Qwarnström E. E., MacFarlane S. A., Page R. C., Dower S. K. Interleukin 1 beta induces rapid phosphorylation and redistribution of talin: a possible mechanism for modulation of fibroblast focal adhesion. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1232–1236. doi: 10.1073/pnas.88.4.1232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schaller M. D., Parsons J. T. Focal adhesion kinase: an integrin-linked protein tyrosine kinase. Trends Cell Biol. 1993 Aug;3(8):258–262. doi: 10.1016/0962-8924(93)90053-4. [DOI] [PubMed] [Google Scholar]
  36. Stanton T. H., Maynard M., Bomsztyk K. Effect of interleukin-1 on intracellular concentration of sodium, calcium, and potassium in 70Z/3 cells. J Biol Chem. 1986 May 5;261(13):5699–5701. [PubMed] [Google Scholar]
  37. Vincenti M. P., Clark I. M., Brinckerhoff C. E. Using inhibitors of metalloproteinases to treat arthritis. Easier said than done? Arthritis Rheum. 1994 Aug;37(8):1115–1126. doi: 10.1002/art.1780370802. [DOI] [PubMed] [Google Scholar]
  38. Werb Z., Tremble P. M., Behrendtsen O., Crowley E., Damsky C. H. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol. 1989 Aug;109(2):877–889. doi: 10.1083/jcb.109.2.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Williams R. J. Calcium fluxes in cells: new views on their significance. Cell Calcium. 1992 May;13(5):273–275. doi: 10.1016/0143-4160(92)90061-v. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES