Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 15;324(Pt 3):737–741. doi: 10.1042/bj3240737

Interferon alpha2 recombinant and epidermal growth factor modulate proliferation and hypusine synthesis in human epidermoid cancer KB cells.

M Caraglia 1, A Passeggio 1, S Beninati 1, A Leardi 1, L Nicolini 1, S Improta 1, A Pinto 1, A R Bianco 1, P Tagliaferri 1, A Abbruzzese 1
PMCID: PMC1218488  PMID: 9210396

Abstract

We previously found that interferon alpha2 recombinant (IFNalpha) increases the expression of epidermal growth factor receptor (EGF-R) in the human epidermoid cancer KB cell line. Here we report the effects of IFNalpha and epidermal growth factor (EGF) on KB cell cycle kinetics. IFNalpha (1000 i.u./ml) for 48 h decreased the S-phase fraction and diminished the expression of Ki67 and proliferating cell nuclear antigen on KB cells. Incubation of IFNalpha-treated KB cells with 10 nM EGF for 12 h reversed these effects. We then studied several biochemical markers of cell proliferation. Ornithine decarboxylase activity was decreased to about one-tenth by IFNalpha and partly restored by EGF. Hypusine is contained only in eukaryotic initiation factor 5A and its levels are correlated with cell proliferation. IFNalpha decreased hypusine synthesis by 75%; exposure of cells to EGF for 12 h restored hypusine synthesis almost completely. We also studied the effects of IFNalpha on the cytotoxicity of the recombinant toxin TP40, which inhibits elongation factor 2 through EGF-R binding and internalization. IFNalpha greatly enhanced the TP40-induced inhibition of protein synthesis in KB cells. In conclusion, IFNalpha, which affects protein synthesis machinery and increases EGF-R expression, enhances the tumoricidal activity of TP40 and hence could be useful in the setting of anti-cancer therapy.

Full Text

The Full Text of this article is available as a PDF (245.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbruzzese A. Developmental pattern for deoxyhypusine hydroxylase in rat brain. J Neurochem. 1988 Mar;50(3):695–699. doi: 10.1111/j.1471-4159.1988.tb02969.x. [DOI] [PubMed] [Google Scholar]
  2. Abbruzzese A., Hanauske-Abel H. M., Park M. H., Henke S., Folk J. E. The active site of deoxyhypusyl hydroxylase: use of catecholpeptides and their component chelator and peptide moieties as molecular probes. Biochim Biophys Acta. 1991 Apr 8;1077(2):159–166. doi: 10.1016/0167-4838(91)90053-3. [DOI] [PubMed] [Google Scholar]
  3. Abbruzzese A., Liguori V., Park M. H. Deoxyhypusine hydroxylase. Adv Exp Med Biol. 1988;250:459–466. doi: 10.1007/978-1-4684-5637-0_40. [DOI] [PubMed] [Google Scholar]
  4. Abbruzzese A., Park M. H., Beninati S., Folk J. E. Inhibition of deoxyhypusine hydroxylase by polyamines and by a deoxyhypusine peptide. Biochim Biophys Acta. 1989 Aug 31;997(3):248–255. doi: 10.1016/0167-4838(89)90195-7. [DOI] [PubMed] [Google Scholar]
  5. Abbruzzese A., Park M. H., Folk J. E. Deoxyhypusine hydroxylase from rat testis. Partial purification and characterization. J Biol Chem. 1986 Mar 5;261(7):3085–3089. [PubMed] [Google Scholar]
  6. Beninati S., Abbruzzese A., Cardinali M. Differences in the post-translational modification of proteins by polyamines between weakly and highly metastatic B16 melanoma cells. Int J Cancer. 1993 Mar 12;53(5):792–797. doi: 10.1002/ijc.2910530515. [DOI] [PubMed] [Google Scholar]
  7. Beninati S., Abbruzzese A., Folk J. E. High-performance liquid chromatographic method for determination of hypusine and deoxyhypusine. Anal Biochem. 1990 Jan;184(1):16–20. doi: 10.1016/0003-2697(90)90004-s. [DOI] [PubMed] [Google Scholar]
  8. Budillon A., Tagliaferri P., Caraglia M., Torrisi M. R., Normanno N., Iacobelli S., Palmieri G., Stoppelli M. P., Frati L., Bianco A. R. Upregulation of epidermal growth factor receptor induced by alpha-interferon in human epidermoid cancer cells. Cancer Res. 1991 Feb 15;51(4):1294–1299. [PubMed] [Google Scholar]
  9. Byers T. L., Ganem B., Pegg A. E. Cytostasis induced in L1210 murine leukaemia cells by the S-adenosyl-L-methionine decarboxylase inhibitor 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine may be due to hypusine depletion. Biochem J. 1992 Nov 1;287(Pt 3):717–724. doi: 10.1042/bj2870717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caraglia M., Leardi A., Corradino S., Ciardiello F., Budillon A., Guarrasi R., Bianco A. R., Tagliaferri P. alpha-Interferon potentiates epidermal growth factor receptor-mediated effects on human epidermoid carcinoma KB cells. Int J Cancer. 1995 May 4;61(3):342–347. doi: 10.1002/ijc.2910610312. [DOI] [PubMed] [Google Scholar]
  11. Chen K. Y. An 18000-dalton protein metabolically labeled by polyamines in various mammalian cell lines. Biochim Biophys Acta. 1983 Apr 20;756(3):395–402. doi: 10.1016/0304-4165(83)90350-1. [DOI] [PubMed] [Google Scholar]
  12. Cooper H. L., Park M. H., Folk J. E. Posttranslational formation of hypusine in a single major protein occurs generally in growing cells and is associated with activation of lymphocyte growth. Cell. 1982 Jul;29(3):791–797. doi: 10.1016/0092-8674(82)90441-x. [DOI] [PubMed] [Google Scholar]
  13. Cooper H. L., Park M. H., Folk J. E., Safer B., Braverman R. Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1854–1857. doi: 10.1073/pnas.80.7.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Folk J. E., Park M. H., Chung S. I., Schrode J., Lester E. P., Cooper H. L. Polyamines as physiological substrates for transglutaminases. J Biol Chem. 1980 Apr 25;255(8):3695–3700. [PubMed] [Google Scholar]
  15. Hershey J. W. Translational control in mammalian cells. Annu Rev Biochem. 1991;60:717–755. doi: 10.1146/annurev.bi.60.070191.003441. [DOI] [PubMed] [Google Scholar]
  16. Jakus J., Wolff E. C., Park M. H., Folk J. E. Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono-guanylated diamines and polyamines. J Biol Chem. 1993 Jun 25;268(18):13151–13159. [PubMed] [Google Scholar]
  17. Lalande M., Hanauske-Abel H. M. A new compound which reversibly arrests T lymphocyte cell cycle near the G1/S boundary. Exp Cell Res. 1990 May;188(1):117–121. doi: 10.1016/0014-4827(90)90285-i. [DOI] [PubMed] [Google Scholar]
  18. Milovic V., Deubner C., Zeuzem S., Piiper A., Caspary W. F., Stein J. EGF stimulates polyamine uptake in Caco-2 cells. Biochem Biophys Res Commun. 1995 Jan 26;206(3):962–968. doi: 10.1006/bbrc.1995.1136. [DOI] [PubMed] [Google Scholar]
  19. Pai L. H., Gallo M. G., FitzGerald D. J., Pastan I. Antitumor activity of a transforming growth factor alpha-Pseudomonas exotoxin fusion protein (TGF-alpha-PE40). Cancer Res. 1991 Jun 1;51(11):2808–2812. [PubMed] [Google Scholar]
  20. Panagiotidis C. A., Artandi S., Calame K., Silverstein S. J. Polyamines alter sequence-specific DNA-protein interactions. Nucleic Acids Res. 1995 May 25;23(10):1800–1809. doi: 10.1093/nar/23.10.1800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Park M. H., Chung S. I., Cooper H. L., Folk J. E. The mammalian hypusine-containing protein, eukaryotic initiation factor 4D. Structural homology of this protein from several species. J Biol Chem. 1984 Apr 10;259(7):4563–4565. [PubMed] [Google Scholar]
  22. Park M. H., Cooper H. L., Folk J. E. Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor. Proc Natl Acad Sci U S A. 1981 May;78(5):2869–2873. doi: 10.1073/pnas.78.5.2869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Park M. H., Cooper H. L., Folk J. E. The biosynthesis of protein-bound hypusine (N epsilon -(4-amino-2-hydroxybutyl)lysine). Lysine as the amino acid precursor and the intermediate role of deoxyhypusine (N epsilon -(4-aminobutyl)lysine). J Biol Chem. 1982 Jun 25;257(12):7217–7222. [PubMed] [Google Scholar]
  24. Park M. H. Regulation of biosynthesis of hypusine in Chinese hamster ovary cells. Evidence for eIF-4D precursor polypeptides. J Biol Chem. 1987 Sep 15;262(26):12730–12734. [PubMed] [Google Scholar]
  25. Park M. H., Wolff E. C. Cell-free synthesis of deoxyhypusine. Separation of protein substrate and enzyme and identification of 1,3-diaminopropane as a product of spermidine cleavage. J Biol Chem. 1988 Oct 25;263(30):15264–15269. [PubMed] [Google Scholar]
  26. Park M. H., Wolff E. C., Folk J. E. Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors. 1993 May;4(2):95–104. [PubMed] [Google Scholar]
  27. Park M. H., Wolff E. C., Folk J. E. Is hypusine essential for eukaryotic cell proliferation? Trends Biochem Sci. 1993 Dec;18(12):475–479. doi: 10.1016/0968-0004(93)90010-k. [DOI] [PubMed] [Google Scholar]
  28. Park M. H., Wolff E. C., Lee Y. B., Folk J. E. Antiproliferative effects of inhibitors of deoxyhypusine synthase. Inhibition of growth of Chinese hamster ovary cells by guanyl diamines. J Biol Chem. 1994 Nov 11;269(45):27827–27832. [PubMed] [Google Scholar]
  29. Park M. H., Wolff E. C., Smit-McBride Z., Hershey J. W., Folk J. E. Comparison of the activities of variant forms of eIF-4D. The requirement for hypusine or deoxyhypusine. J Biol Chem. 1991 May 5;266(13):7988–7994. [PubMed] [Google Scholar]
  30. Schnier J., Schwelberger H. G., Smit-McBride Z., Kang H. A., Hershey J. W. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jun;11(6):3105–3114. doi: 10.1128/mcb.11.6.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Siegall C. B., Xu Y. H., Chaudhary V. K., Adhya S., Fitzgerald D., Pastan I. Cytotoxic activities of a fusion protein comprised of TGF alpha and Pseudomonas exotoxin. FASEB J. 1989 Dec;3(14):2647–2652. doi: 10.1096/fasebj.3.14.2556314. [DOI] [PubMed] [Google Scholar]
  32. Sung C., Shockley T. R., Morrison P. F., Dvorak H. F., Yarmush M. L., Dedrick R. L. Predicted and observed effects of antibody affinity and antigen density on monoclonal antibody uptake in solid tumors. Cancer Res. 1992 Jan 15;52(2):377–384. [PubMed] [Google Scholar]
  33. Tagliaferri P., Caraglia M., Muraro R., Pinto A., Budillon A., Zagonel V., Bianco A. R. Pharmacological modulation of peptide growth factor receptor expression on tumor cells as a basis for cancer therapy. Anticancer Drugs. 1994 Aug;5(4):379–393. doi: 10.1097/00001813-199408000-00001. [DOI] [PubMed] [Google Scholar]
  34. Wallon U. M., Persson L., Heby O. Regulation of ornithine decarboxylase during cell growth. Changes in the stability and translatability of the mRNA, and in the turnover of the protein. Mol Cell Biochem. 1995 May 10;146(1):39–44. doi: 10.1007/BF00926879. [DOI] [PubMed] [Google Scholar]
  35. Wojciechowski K., Trzeciak L., Konturek S. J., Ostrowski J. Inhibition of acid secretory response and induction of ornithine decarboxylase and its mRNA by TGF alpha and EGF in isolated rat gastric glands. Regul Pept. 1995 Mar 7;56(1):1–8. doi: 10.1016/0167-0115(95)00121-q. [DOI] [PubMed] [Google Scholar]
  36. Wolff E. C., Park M. H., Folk J. E. Cleavage of spermidine as the first step in deoxyhypusine synthesis. The role of NAD. J Biol Chem. 1990 Mar 25;265(9):4793–4799. [PubMed] [Google Scholar]
  37. Wright P. S., Cooper J. R., Cross-Doersen D. E., Miller J. A., Chmielewski P. A., Wagner R. L., Streng K. A., Flanagan M. A. Regulation of ornithine decarboxylase mRNA levels in human breast cancer cells: pattern of expression and involvement of core enhancer promoter element. Cell Growth Differ. 1995 Sep;6(9):1097–1102. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES