Abstract
The binding of four anionic ligands, cyanide, fluoride, azide and formate, to cytochrome bo purified from Escherichia coli cells grown with a copper supplement (+Cu cyt.bo) is described. Membrane-bound cytochrome bo that lacks the copper component, CuB, of its active site can be prepared from cells grown under conditions where the availability of copper is limited by the presence of a CuI chelator, 2,2'-bicinchinonic acid. The ligand-binding properties of this copper-less enzyme (-Cu cyt.bo) are compared with those of +Cu cyt. bo. As judged from near-UV/visible spectroscopic changes, cyanide forms a low-spin complex with +Cu cyt.bo, whereas azide, fluoride and formate form high-spin complexes. The pH-dependences of binding suggest that for all four of these anionic ligands, both the rates of binding and the binding affinities are primarily dependent on the concentration of their protonated forms. -Cu cyt.bo, which shows less than 15% of the duroquinol oxidase activity of +Cu cyt.bo, binds cyanide, azide and fluoride, but with greatly decreased affinity (<1/30, 1/2000 and 1/2500 respectively at pH5.5 compared with +Cu cyt.bo). The complex of azide with -Cu cyt.bo still seems to be high-spin and azide binding to -Cu cyt.bo is still pH-dependent, although less so than azide binding to +Cu cyt.bo.
Full Text
The Full Text of this article is available as a PDF (519.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Au D. C., Gennis R. B. Cloning of the cyo locus encoding the cytochrome o terminal oxidase complex of Escherichia coli. J Bacteriol. 1987 Jul;169(7):3237–3242. doi: 10.1128/jb.169.7.3237-3242.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brancaccio A., Cutruzzolá F., Allocatelli C. T., Brunori M., Smerdon S. J., Wilkinson A. J., Dou Y., Keenan D., Ikeda-Saito M., Brantley R. E., Jr Structural factors governing azide and cyanide binding to mammalian metmyoglobins. J Biol Chem. 1994 May 13;269(19):13843–13853. [PubMed] [Google Scholar]
- Brenner A. J., Harris E. D. A quantitative test for copper using bicinchoninic acid. Anal Biochem. 1995 Mar 20;226(1):80–84. doi: 10.1006/abio.1995.1194. [DOI] [PubMed] [Google Scholar]
- Brown S., Colson A. M., Meunier B., Rich P. R. Rapid screening of cytochromes of respiratory mutants of Saccharomyces cerevisiae. Application to the selection of strains containing novel forms of cytochrome-c oxidase. Eur J Biochem. 1993 Apr 1;213(1):137–145. doi: 10.1111/j.1432-1033.1993.tb17743.x. [DOI] [PubMed] [Google Scholar]
- Brown S., Rumbley J. N., Moody A. J., Thomas J. W., Gennis R. B., Rich P. R. Flash photolysis of the carbon monoxide compounds of wild-type and mutant variants of cytochrome bo from Escherichia coli. Biochim Biophys Acta. 1994 Jan 4;1183(3):521–532. doi: 10.1016/0005-2728(94)90080-9. [DOI] [PubMed] [Google Scholar]
- Butler W. L. Fourth derivative spectra. Methods Enzymol. 1979;56:501–515. doi: 10.1016/0076-6879(79)56048-0. [DOI] [PubMed] [Google Scholar]
- Calhoun M. W., Gennis R. B., Ingledew W. J., Salerno J. C. Strong-field and integral spin-ligand complexes of the cytochrome bo quinol oxidase in Escherichia coli membrane preparations. Biochim Biophys Acta. 1994 May 18;1206(1):143–154. doi: 10.1016/0167-4838(94)90083-3. [DOI] [PubMed] [Google Scholar]
- Case D. A., Karplus M. Dynamics of ligand binding to heme proteins. J Mol Biol. 1979 Aug 15;132(3):343–368. doi: 10.1016/0022-2836(79)90265-1. [DOI] [PubMed] [Google Scholar]
- Ciccognani D. T., Hughes M. N., Poole R. K. Carbon monoxide-binding properties of the cytochrome bo quinol oxidase complex in Escherichia coli are changed by copper deficiency in continuous culture. FEMS Microbiol Lett. 1992 Jul 1;73(1-2):1–6. doi: 10.1016/0378-1097(92)90572-6. [DOI] [PubMed] [Google Scholar]
- Edwards S. L., Poulos T. L., Kraut J. The crystal structure of fluoride-inhibited cytochrome c peroxidase. J Biol Chem. 1984 Nov 10;259(21):12984–12988. [PubMed] [Google Scholar]
- Edwards S. L., Poulos T. L. Ligand binding and structural perturbations in cytochrome c peroxidase. A crystallographic study. J Biol Chem. 1990 Feb 15;265(5):2588–2595. [PubMed] [Google Scholar]
- Erman J. E. Kinetic and equilibrium studies of cyanide binding by cytochrome c peroxidase. Biochemistry. 1974 Jan 1;13(1):39–44. doi: 10.1021/bi00698a007. [DOI] [PubMed] [Google Scholar]
- Erman J. E. Kinetic studies of fluoride binding by cytochrome c peroxidase. Biochemistry. 1974 Jan 1;13(1):34–39. doi: 10.1021/bi00698a006. [DOI] [PubMed] [Google Scholar]
- Ingledew W. J., Horrocks J., Salerno J. C. Ligand binding to the haem-copper binuclear catalytic site of cytochrome bo, a respiratory quinol oxidase from Escherichia coli. Eur J Biochem. 1993 Mar 15;212(3):657–664. doi: 10.1111/j.1432-1033.1993.tb17703.x. [DOI] [PubMed] [Google Scholar]
- Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
- Li W., Palmer G. Spectroscopic characterization of the interaction of azide and thiocyanate with the binuclear center of cytochrome oxidase: evidence for multiple ligand sites. Biochemistry. 1993 Feb 23;32(7):1833–1843. doi: 10.1021/bi00058a018. [DOI] [PubMed] [Google Scholar]
- Little R. H., Cheesman M. R., Thomson A. J., Greenwood C., Watmough N. J. Cytochrome bo from Escherichia coli: binding of azide to CuB. Biochemistry. 1996 Oct 29;35(43):13780–13787. doi: 10.1021/bi961221d. [DOI] [PubMed] [Google Scholar]
- Minagawa J., Mogi T., Gennis R. B., Anraku Y. Identification of heme and copper ligands in subunit I of the cytochrome bo complex in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):2096–2104. [PubMed] [Google Scholar]
- Mitchell R., Mitchell P., Rich P. R. Protonation states of the catalytic intermediates of cytochrome c oxidase. Biochim Biophys Acta. 1992 Jul 17;1101(2):188–191. [PubMed] [Google Scholar]
- Mitchell R., Moody A. J., Rich P. R. Cyanide and carbon monoxide binding to the reduced form of cytochrome bo from Escherichia coli. Biochemistry. 1995 Jun 13;34(23):7576–7585. doi: 10.1021/bi00023a003. [DOI] [PubMed] [Google Scholar]
- Mitchell R., Rich P. R. Proton uptake by cytochrome c oxidase on reduction and on ligand binding. Biochim Biophys Acta. 1994 Jun 28;1186(1-2):19–26. doi: 10.1016/0005-2728(94)90130-9. [DOI] [PubMed] [Google Scholar]
- Moody A. J., Cooper C. E., Gennis R. B., Rumbley J. N., Rich P. R. Interconversion of fast and slow forms of cytochrome bo from Escherichia coli. Biochemistry. 1995 May 23;34(20):6838–6846. doi: 10.1021/bi00020a030. [DOI] [PubMed] [Google Scholar]
- Moody A. J., Cooper C. E., Rich P. R. Characterisation of 'fast' and 'slow' forms of bovine heart cytochrome-c oxidase. Biochim Biophys Acta. 1991 Aug 23;1059(2):189–207. doi: 10.1016/s0005-2728(05)80204-x. [DOI] [PubMed] [Google Scholar]
- Moody A. J., Rich P. R. The reaction of hydrogen peroxide with pulsed cytochrome bo from Escherichia coli. Eur J Biochem. 1994 Dec 1;226(2):731–737. doi: 10.1111/j.1432-1033.1994.tb20102.x. [DOI] [PubMed] [Google Scholar]
- Moody A. J., Rumbley J. N., Gennis R. B., Ingledew W. J., Rich P. R. Ligand-binding properties and heterogeneity of cytochrome bo from Escherichia coli. Biochim Biophys Acta. 1993 Mar 1;1141(2-3):321–329. doi: 10.1016/0005-2728(93)90060-s. [DOI] [PubMed] [Google Scholar]
- Puustinen A., Morgan J. E., Verkhovsky M., Thomas J. W., Gennis R. B., Wikström M. The low-spin heme site of cytochrome o from Escherichia coli is promiscuous with respect to heme type. Biochemistry. 1992 Oct 27;31(42):10363–10369. doi: 10.1021/bi00157a026. [DOI] [PubMed] [Google Scholar]
- Salerno J. C., Bolgiano B., Poole R. K., Gennis R. B., Ingledew W. J. Heme-copper and heme-heme interactions in the cytochrome bo-containing quinol oxidase of Escherichia coli. J Biol Chem. 1990 Mar 15;265(8):4364–4368. [PubMed] [Google Scholar]
- Thomson A. J., Greenwood C., Gadsby P. M., Peterson J., Eglinton D. G., Hill B. C., Nicholls P. The structure of the cytochrome a3-CuB site of mammalian cytochrome c oxidase as probed by MCD and EPR spectroscopy. J Inorg Biochem. 1985 Mar-Apr;23(3-4):187–197. doi: 10.1016/0162-0134(85)85025-x. [DOI] [PubMed] [Google Scholar]
- Trumpower B. L., Gennis R. B. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem. 1994;63:675–716. doi: 10.1146/annurev.bi.63.070194.003331. [DOI] [PubMed] [Google Scholar]
- Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. doi: 10.1126/science.7652554. [DOI] [PubMed] [Google Scholar]
- Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
- Watmough N. J., Cheesman M. R., Gennis R. B., Greenwood C., Thomson A. J. Distinct forms of the haem o-Cu binuclear site of oxidised cytochrome bo from Escherichia coli. Evidence from optical and EPR spectroscopy. FEBS Lett. 1993 Mar 15;319(1-2):151–154. doi: 10.1016/0014-5793(93)80056-z. [DOI] [PubMed] [Google Scholar]
- Zweck A., Bechmann G., Weiss H. The pathway of the quinol/quinone transhydrogenation reaction in ubiquinol: cytochrome-c reductase of Neurospora mitochondria. Eur J Biochem. 1989 Jul 15;183(1):199–203. doi: 10.1111/j.1432-1033.1989.tb14913.x. [DOI] [PubMed] [Google Scholar]