Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 15;324(Pt 3):761–775. doi: 10.1042/bj3240761

Validation and steady-state analysis of a power-law model of purine metabolism in man.

R Curto 1, E O Voit 1, A Sorribas 1, M Cascante 1
PMCID: PMC1218491  PMID: 9210399

Abstract

The paper introduces a model of human purine metabolism in situ. Chosen from among several alternative system descriptions, the model is formulated as a Generalized Mass Action system within Biochemical Systems Theory and validated with analyses of steady-state and dynamic characteristics. Eigenvalue and sensitivity analyses indicate that the model has a stable and robust steady-state. The model quite accurately reproduces numerous biochemical and clinical observations in healthy subjects as well as in patients with disorders of purine metabolism. These results suggest that the model can be used to assess biochemical and clinical aspects of human purine metabolism. It provides a means of exploring effects of enzyme deficiencies and is a potential tool for identifying steps of the pathway that could be the target of therapeutical intervention. Numerous quantitative comparisons with data are given. The model can be used for biomathematical exploration of relationships between enzymic deficiencies and clinically manifested diseases.

Full Text

The Full Text of this article is available as a PDF (920.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AYVAZIAN J. H., SKUPP S. THE STUDY OF PURINE UTILIZATION AND EXCRETION IN A XANTHINURIC MAN. J Clin Invest. 1965 Jul;44:1248–1260. doi: 10.1172/JCI105231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albe K. R., Butler M. H., Wright B. E. Cellular concentrations of enzymes and their substrates. J Theor Biol. 1990 Mar 22;143(2):163–195. doi: 10.1016/s0022-5193(05)80266-8. [DOI] [PubMed] [Google Scholar]
  3. Albe K. R., Wright B. E. Carbohydrate metabolism in Dictyostelium discoideum: II. Systems' analysis. J Theor Biol. 1994 Aug 7;169(3):243–251. doi: 10.1006/jtbi.1994.1145. [DOI] [PubMed] [Google Scholar]
  4. Ayvazian J. H., Skupp S. Study of the utilization and excretion of dietary purines in a xanthinuric man. J Clin Invest. 1966 Dec;45(12):1859–1864. doi: 10.1172/JCI105490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ballard P. L., Williams-Ashman H. G. Isolation and properties of a testicular ribonucleic acid polymerase. J Biol Chem. 1966 Apr 10;241(7):1602–1615. [PubMed] [Google Scholar]
  6. Barber J. R., Morimoto B. H., Brunauer L. S., Clarke S. Metabolism of S-adenosyl-L-methionine in intact human erythrocytes. Biochim Biophys Acta. 1986 May 29;886(3):361–372. doi: 10.1016/0167-4889(86)90171-0. [DOI] [PubMed] [Google Scholar]
  7. Bartel T., Holzhütter H. G. Mathematical modelling of the purine metabolism of the rat liver. Biochim Biophys Acta. 1990 Sep 14;1035(3):331–339. doi: 10.1016/0304-4165(90)90097-g. [DOI] [PubMed] [Google Scholar]
  8. Becker M. A., Puig J. G., Mateos F. A., Jimenez M. L., Kim M., Simmonds H. A. Neurodevelopmental impairment and deranged PRPP and purine nucleotide synthesis in inherited superactivity of PRPP synthetase. Adv Exp Med Biol. 1989;253A:15–22. doi: 10.1007/978-1-4684-5673-8_3. [DOI] [PubMed] [Google Scholar]
  9. Bottiglieri T., Hyland K. S-adenosylmethionine levels in psychiatric and neurological disorders: a review. Acta Neurol Scand Suppl. 1994;154:19–26. doi: 10.1111/j.1600-0404.1994.tb05405.x. [DOI] [PubMed] [Google Scholar]
  10. Bradford M. J., Krakoff I. H., Leeper R., Balis M. E. Study of purine metabolism in a xanthinuric female. J Clin Invest. 1968 Jun;47(6):1325–1332. doi: 10.1172/JCI105824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cascante M., Curto R., Sorribas A. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: steady-state analysis. Math Biosci. 1995 Nov;130(1):51–69. doi: 10.1016/0025-5564(94)00093-f. [DOI] [PubMed] [Google Scholar]
  12. Cascante M., Franco R., Canela E. I. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. Unbranched pathways. Math Biosci. 1989 Jun;94(2):271–288. doi: 10.1016/0025-5564(89)90067-9. [DOI] [PubMed] [Google Scholar]
  13. Cascante M., Franco R., Canela E. I. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. Complex systems. Math Biosci. 1989 Jun;94(2):289–309. doi: 10.1016/0025-5564(89)90068-0. [DOI] [PubMed] [Google Scholar]
  14. Clarke S. Protein carboxyl methyltransferases: two distinct classes of enzymes. Annu Rev Biochem. 1985;54:479–506. doi: 10.1146/annurev.bi.54.070185.002403. [DOI] [PubMed] [Google Scholar]
  15. Curto R., Sorribas A., Cascante M. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature. Math Biosci. 1995 Nov;130(1):25–50. doi: 10.1016/0025-5564(94)00092-e. [DOI] [PubMed] [Google Scholar]
  16. Edwards N. L., Recker D., Fox I. H. Overproduction of uric acid in hypoxanthine-guanine phosphoribosyltransferase deficiency. Contribution by impaired purine salvage. J Clin Invest. 1979 May;63(5):922–930. doi: 10.1172/JCI109392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ehlde M., Zacchi G. MIST: a user-friendly metabolic simulator. Comput Appl Biosci. 1995 Apr;11(2):201–207. doi: 10.1093/bioinformatics/11.2.201. [DOI] [PubMed] [Google Scholar]
  18. Eriksson S., Thelander L., Akerman M. Allosteric regulation of calf thymus ribonucleoside diphosphate reductase. Biochemistry. 1979 Jul 10;18(14):2948–2952. doi: 10.1021/bi00581a005. [DOI] [PubMed] [Google Scholar]
  19. Fisher P. A., Wang T. S., Korn D. Enzymological characterization of DNA polymerase alpha. Basic catalytic properties processivity, and gap utilization of the homogeneous enzyme from human KB cells. J Biol Chem. 1979 Jul 10;254(13):6128–6137. [PubMed] [Google Scholar]
  20. Fox I. H., Kelley W. N. Human phosphoribosylpyrophosphate synthetase. Distribution, purification, and properties. J Biol Chem. 1971 Sep 25;246(18):5739–5748. [PubMed] [Google Scholar]
  21. Fox I. H., Kelley W. N. Human phosphoribosylpyrophosphate synthetase. Kinetic mechanism and end product inhibition. J Biol Chem. 1972 Apr 10;247(7):2126–2131. [PubMed] [Google Scholar]
  22. Franco R., Canela E. I. Computer simulation of purine metabolism. Eur J Biochem. 1984 Oct 15;144(2):305–315. doi: 10.1111/j.1432-1033.1984.tb08465.x. [DOI] [PubMed] [Google Scholar]
  23. Fujimori S., Tagaya T., Yamaoka N., Kamatani N., Akaoka I. Molecular analysis of hypoxanthine-guanine phosphoribosyltransferase deficiency in Japanese patients. Adv Exp Med Biol. 1991;309B:101–104. doi: 10.1007/978-1-4615-7703-4_22. [DOI] [PubMed] [Google Scholar]
  24. Giacomello A., Salerno C. Human hypoxanthine-guanine phosphoribosyltransferase. Steady state kinetics of the forward and reverse reactions. J Biol Chem. 1978 Sep 10;253(17):6038–6044. [PubMed] [Google Scholar]
  25. Giacomello A., Salerno C. Possible metabolic basis for GTP depletion in red cells of patients with PRPP synthetase superactivity. Adv Exp Med Biol. 1991;309B:253–256. doi: 10.1007/978-1-4615-7703-4_56. [DOI] [PubMed] [Google Scholar]
  26. Goodman M. N., Lowenstein J. M. The purine nucleotide cycle. Studies of ammonia production by skeletal muscle in situ and in perfused preparations. J Biol Chem. 1977 Jul 25;252(14):5054–5060. [PubMed] [Google Scholar]
  27. Grune T., Siems W. G., Gerber G., Uhlig R. Determination of the ultraviolet absorbance and radioactivity of purine compounds separated by high-performance liquid chromatography. Application to metabolic flux rate analysis. J Chromatogr. 1991 Aug 16;553(1-2):193–199. doi: 10.1016/s0021-9673(01)88488-0. [DOI] [PubMed] [Google Scholar]
  28. Grune T., Siems W., Uhlig R., Langen P., Gerber G. Changes of purine nucleotide metabolism of Ehrlich ascites cells during transition of tumour growth. Adv Exp Med Biol. 1991;309A:109–112. doi: 10.1007/978-1-4899-2638-8_24. [DOI] [PubMed] [Google Scholar]
  29. Harkness R. A. Lesch-Nyhan syndrome: reduced amino acid concentrations in CSF and brain. Adv Exp Med Biol. 1989;253A:159–163. doi: 10.1007/978-1-4684-5673-8_26. [DOI] [PubMed] [Google Scholar]
  30. Heinmets F. Supercomputer analysis of purine and pyrimidine metabolism leading to DNA synthesis. Cell Biophys. 1989 Jun;14(3):283–323. doi: 10.1007/BF02797274. [DOI] [PubMed] [Google Scholar]
  31. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  32. Henderson J. F., Brox L. W., Kelley W. N., Rosenbloom F. M., Seegmiller J. E. Kinetic studies of hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1968 May 25;243(10):2514–2522. [PubMed] [Google Scholar]
  33. Hershfield M. S., Seegmiller J. E. Regulation of de novo purine biosynthesis in human lymphoblasts. Coordinate control of proximal (rate-determining) steps and the inosinic acid branch point. J Biol Chem. 1976 Dec 10;251(23):7348–7354. [PubMed] [Google Scholar]
  34. Hitchings G. H. Biochemical approach to new medications. Adv Exp Med Biol. 1991;309A:1–6. doi: 10.1007/978-1-4899-2638-8_1. [DOI] [PubMed] [Google Scholar]
  35. Holmes E. W. Kinetic, physical, and regulatory properties of amidophosphoribosyltransferase. Adv Enzyme Regul. 1980;19:215–231. doi: 10.1016/0065-2571(81)90017-0. [DOI] [PubMed] [Google Scholar]
  36. Holmsen H., Rozenberg M. C. Adenine nucleotide metabolism of blood platelets. 3. Adenine phosphoribosyl transferase and nucleotide formation from exogenous adenine. Biochim Biophys Acta. 1968 Apr 22;157(2):266–279. [PubMed] [Google Scholar]
  37. Hori M., Henderson J. F. Kinetic studies of adenine phosphoribosyltransferase. J Biol Chem. 1966 Jul 25;241(14):3404–3408. [PubMed] [Google Scholar]
  38. Höglund L., Reichard P. Cytoplasmic 5'(3')-nucleotidase from human placenta. J Biol Chem. 1990 Apr 25;265(12):6589–6595. [PubMed] [Google Scholar]
  39. Ishijima S., Kita K., Kinoshita N., Ishizuka T., Suzuki N., Tatibana M. Evidence for early mitogenic stimulation of metabolic flux through phosphoribosyl pyrophosphate into nucleotides in Swiss 3T3 cells. J Biochem. 1988 Oct;104(4):570–575. doi: 10.1093/oxfordjournals.jbchem.a122512. [DOI] [PubMed] [Google Scholar]
  40. Itoh R. Purification and some properties of cytosol 5'-nucleotidase from rat liver. Biochim Biophys Acta. 1981 Feb 13;657(2):402–410. doi: 10.1016/0005-2744(81)90326-0. [DOI] [PubMed] [Google Scholar]
  41. Jacobs A. E., Oosterhof A., Veerkamp J. H. Purine and pyrimidine metabolism in human muscle and cultured muscle cells. Biochim Biophys Acta. 1988 Jun 30;970(2):130–136. doi: 10.1016/0167-4889(88)90171-1. [DOI] [PubMed] [Google Scholar]
  42. Jerushalmy Z., Sperling O., Pinkhas J., Krynska M., De Vries A. Enzymes of purine metabolism in platelets: phosphoribosylpyrophosphate synthetase and purine phosphoribosyltransferases. Adv Exp Med Biol. 1973;41:159–162. doi: 10.1007/978-1-4684-3294-7_19. [DOI] [PubMed] [Google Scholar]
  43. Jiménez M. L., Puig J. G., Mateos F. A., Ramos T. H., Melián J. S., Nieto V. G., Becker M. A. Increased purine nucleotide degradation in the central nervous system (CNS) in PRPP synthetase superactivity. Adv Exp Med Biol. 1989;253A:9–13. doi: 10.1007/978-1-4684-5673-8_2. [DOI] [PubMed] [Google Scholar]
  44. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  45. Kamatani N., Kuroshima S., Terai C., Hakoda M., Nishioka K., Mikanagi K. Diagnosis of genotypes for adenine phosphoribosyltransferase (APRT) deficiency. Adv Exp Med Biol. 1989;253A:51–58. doi: 10.1007/978-1-4684-5673-8_8. [DOI] [PubMed] [Google Scholar]
  46. Kather H. Pathways of purine metabolism in human adipocytes. Further evidence against a role of adenosine as an endogenous regulator of human fat cell function. J Biol Chem. 1990 Jan 5;265(1):96–102. [PubMed] [Google Scholar]
  47. King M. E., Honeysett J. M., Howell S. B. Regulation of de novo purine synthesis in human bone marrow mononuclear cells by hypoxanthine. J Clin Invest. 1983 Sep;72(3):965–970. doi: 10.1172/JCI111068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kovarsky J., Evans M. C., Holmes E. W. Regulation of human amidophosphoribosyltransferase: interaction of orthophosphate, PP-ribose-P, and purine ribonucleotides. Can J Biochem. 1978 May;56(5):334–338. doi: 10.1139/o78-052. [DOI] [PubMed] [Google Scholar]
  49. Kunjara S., Sochor M., Greenbaum A. L., McLean P. Aspects of the regulation of hepatic phosphoribosyl pyrophosphate formation in the obese (ob/ob) mouse: relationship to the pentose phosphate pathway. Biochem Med Metab Biol. 1993 Apr;49(2):217–227. doi: 10.1006/bmmb.1993.1024. [DOI] [PubMed] [Google Scholar]
  50. Lathem W., Rodnan G. P. IMPAIRMENT OF URIC ACID EXCRETION IN GOUT. J Clin Invest. 1962 Nov;41(11):1955–1963. doi: 10.1172/JCI104653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Mackenzie J. J., Sorensen L. B. Guanosine 5'-phosphate reductase of human erythrocytes. Biochim Biophys Acta. 1973 Dec 19;327(2):282–294. doi: 10.1016/0005-2744(73)90411-7. [DOI] [PubMed] [Google Scholar]
  52. Marcolongo R., Marinello E., Pompucci G., Pagani R. The role of xanthine oxidase in hyperuricemic states. Arthritis Rheum. 1974 Jul-Aug;17(4):430–438. doi: 10.1002/art.1780170414. [DOI] [PubMed] [Google Scholar]
  53. Matsuda Y., Ogawa H., Fukutome S., Shiraki H., Nakagawa H. Adenylosuccinate synthetase in rat liver: the existence of two types and their regulatory roles. Biochem Biophys Res Commun. 1977 Sep 23;78(2):766–771. doi: 10.1016/0006-291x(77)90245-5. [DOI] [PubMed] [Google Scholar]
  54. Morgan G., Strobel S., Montero C., Duley J. A., Davies P. M., Simmonds H. A. Raised IMP-dehydrogenase activity in the erythrocytes of a case of purine nucleoside phosphorylase (PNP) deficiency. Adv Exp Med Biol. 1991;309B:297–300. doi: 10.1007/978-1-4615-7703-4_66. [DOI] [PubMed] [Google Scholar]
  55. Nowak G., Kaletha K. Molecular forms of human heart muscle AMP deaminase. Biochem Med Metab Biol. 1991 Oct;46(2):263–266. doi: 10.1016/0885-4505(91)90074-u. [DOI] [PubMed] [Google Scholar]
  56. Nowak G., Kaletha K. Purification and properties of AMP-deaminase from human kidney. Biochem Med Metab Biol. 1992 Jun;47(3):232–241. doi: 10.1016/0885-4505(92)90031-s. [DOI] [PubMed] [Google Scholar]
  57. Oden K. L., Clarke S. S-adenosyl-L-methionine synthetase from human erythrocytes: role in the regulation of cellular S-adenosylmethionine levels. Biochemistry. 1983 Jun 7;22(12):2978–2986. doi: 10.1021/bi00281a030. [DOI] [PubMed] [Google Scholar]
  58. Ogawa H., Shiraki H., Matsuda Y., Kakiuchi K., Nakagawa H. Purification, crystallization, and properties of adenylosuccinate synthetase from rat skeletal muscle. J Biochem. 1977 Apr;81(4):859–869. doi: 10.1093/oxfordjournals.jbchem.a131550. [DOI] [PubMed] [Google Scholar]
  59. Okamoto M., Savageau M. A. Integrated function of a kinetic proofreading mechanism: double-stage proofreading by isoleucyl-tRNA synthetase. Biochemistry. 1986 Apr 22;25(8):1969–1975. doi: 10.1021/bi00356a020. [DOI] [PubMed] [Google Scholar]
  60. Okamoto M., Savageau M. A. Integrated function of a kinetic proofreading mechanism: steady-state analysis testing internal consistency of data obtained in vivo and in vitro and predicting parameter values. Biochemistry. 1984 Apr 10;23(8):1701–1709. doi: 10.1021/bi00303a019. [DOI] [PubMed] [Google Scholar]
  61. Page T., Bakay B., Nyhan W. L. Human GMP synthetase. Int J Biochem. 1984;16(1):117–120. doi: 10.1016/0020-711x(84)90061-2. [DOI] [PubMed] [Google Scholar]
  62. Page T., Nyhan W. L., Yu A. L., Yu J. A syndrome of megaloblastic anemia, immunodeficiency, and excessive nucleotide degradation. Adv Exp Med Biol. 1991;309B:345–348. doi: 10.1007/978-1-4615-7703-4_77. [DOI] [PubMed] [Google Scholar]
  63. Pegg A. E., Williams-Ashman H. G. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate. J Biol Chem. 1969 Feb 25;244(4):682–693. [PubMed] [Google Scholar]
  64. Peters G. J., Beijnen J. H. Purine and pyrimidine metabolism: still a black box? Pharm World Sci. 1994 Apr 15;16(2):37–38. doi: 10.1007/BF01880654. [DOI] [PubMed] [Google Scholar]
  65. Pillwein K., Chiba P., Knoflach A., Czermak B., Schuchter K., Gersdorf E., Ausserer B., Murr C., Goebl R., Stockhammer G. Purine metabolism of human glioblastoma in vivo. Cancer Res. 1990 Mar 1;50(5):1576–1579. [PubMed] [Google Scholar]
  66. Pugh M. E., Skibo E. B. Inosine monophosphate dehydrogenase from porcine (Sus scrofa domestica) thymus: purification and properties. Comp Biochem Physiol B. 1993 Jun;105(2):381–387. doi: 10.1016/0305-0491(93)90245-z. [DOI] [PubMed] [Google Scholar]
  67. STRITTMATTER C. F. STUDIES ON AVIAN XANTHINE DEHYDROGENASES. PROPERTIES AND PATTERNS OF APPEARANCE DURING DEVELOPMENT. J Biol Chem. 1965 Jun;240:2557–2564. [PubMed] [Google Scholar]
  68. Savageau M. A. Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature. 1971 Feb 19;229(5286):542–544. doi: 10.1038/229542a0. [DOI] [PubMed] [Google Scholar]
  69. Savageau M. A., Sorribas A. Constraints among molecular and systemic properties: implications for physiological genetics. J Theor Biol. 1989 Nov 8;141(1):93–115. doi: 10.1016/s0022-5193(89)80011-6. [DOI] [PubMed] [Google Scholar]
  70. Seegmiller J. E., Rosenbloom F. M., Kelley W. N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967 Mar 31;155(3770):1682–1684. doi: 10.1126/science.155.3770.1682. [DOI] [PubMed] [Google Scholar]
  71. Shiraishi F., Savageau M. A. The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations. J Biol Chem. 1992 Nov 15;267(32):22912–22918. [PubMed] [Google Scholar]
  72. Shiraishi F., Savageau M. A. The tricarboxylic acid cycle in Dictyostelium discoideum. II. Evaluation of model consistency and robustness. J Biol Chem. 1992 Nov 15;267(32):22919–22925. [PubMed] [Google Scholar]
  73. Shiraishi F., Savageau M. A. The tricarboxylic acid cycle in Dictyostelium discoideum. III. Analysis of steady state and dynamic behavior. J Biol Chem. 1992 Nov 15;267(32):22926–22933. [PubMed] [Google Scholar]
  74. Shiraishi F., Savageau M. A. The tricarboxylic acid cycle in Dictyostelium discoideum. IV. Resolution of discrepancies between alternative methods of analysis. J Biol Chem. 1992 Nov 15;267(32):22934–22943. [PubMed] [Google Scholar]
  75. Shiraishi F., Savageau M. A. The tricarboxylic acid cycle in Dictyostelium discoideum. Systemic effects of including protein turnover in the current model. J Biol Chem. 1993 Aug 15;268(23):16917–16928. [PubMed] [Google Scholar]
  76. Siems W. G., Grune T., Schmidt H., Uhlig R., Gerber G., Tikhonov Y. V., Pimenov A. M., Toguzov R. T. Purine nucleotides, nucleosides and nucleobases of liver, skeletal muscle, blood and tumor cells during the growth of Ehrlich ascites tumor in mice. Adv Exp Med Biol. 1991;309A:113–116. doi: 10.1007/978-1-4899-2638-8_25. [DOI] [PubMed] [Google Scholar]
  77. Snyder F. F., Henderson J. F. Alternative pathways of deoxyadenosine and adenosine metabolism. J Biol Chem. 1973 Aug 25;248(16):5899–5904. [PubMed] [Google Scholar]
  78. Sorribas A., Curto R., Cascante M. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model validation and dynamic behavior. Math Biosci. 1995 Nov;130(1):71–84. doi: 10.1016/0025-5564(94)00094-g. [DOI] [PubMed] [Google Scholar]
  79. Spector T., Jones T. E., Miller R. L. Reaction mechanism and specificity of human GMP reductase. Substrates, inhibitors, activators, and inactivators. J Biol Chem. 1979 Apr 10;254(7):2308–2315. [PubMed] [Google Scholar]
  80. Stephanopoulos G., Sinskey A. J. Metabolic engineering--methodologies and future prospects. Trends Biotechnol. 1993 Sep;11(9):392–396. doi: 10.1016/0167-7799(93)90099-U. [DOI] [PubMed] [Google Scholar]
  81. Stone R. L., Zalkin H., Dixon J. E. Expression, purification, and kinetic characterization of recombinant human adenylosuccinate lyase. J Biol Chem. 1993 Sep 15;268(26):19710–19716. [PubMed] [Google Scholar]
  82. Tabucchi A., Carlucci F., Pagani R., Ciccomascolo F., Lopalco L., Siccardi A. Some aspects of purine nucleotide metabolism in human lymphocytes: nucleotide content in human lymphoblastoid lines transfected with HIV-1. Adv Exp Med Biol. 1991;309A:121–124. doi: 10.1007/978-1-4899-2638-8_27. [DOI] [PubMed] [Google Scholar]
  83. Traut T. W., Ropp P. A., Poma A. Purine nucleoside phosphorylase: allosteric regulation of a dissociating enzyme. Adv Exp Med Biol. 1991;309B:177–180. doi: 10.1007/978-1-4615-7703-4_40. [DOI] [PubMed] [Google Scholar]
  84. Van Acker K. J., Simmonds H. A. Long-term evolution of type 1 adenine phosphoribosyltransferase (APRT) deficiency. Adv Exp Med Biol. 1991;309B:91–94. doi: 10.1007/978-1-4615-7703-4_20. [DOI] [PubMed] [Google Scholar]
  85. Van Acker K. J., Simmonds H. A., Potter C., Cameron J. S. Complete deficiency of adenine phosphoribosyltransferase. Report of a family. N Engl J Med. 1977 Jul 21;297(3):127–132. doi: 10.1056/NEJM197707212970302. [DOI] [PubMed] [Google Scholar]
  86. Van der Weyden M. B., Kelly W. N. Human adenylosuccinate synthetase. Partial purification, kinetic and regulatory properties of the enzyme from placenta. J Biol Chem. 1974 Nov 25;249(22):7282–7289. [PubMed] [Google Scholar]
  87. Whelan J. M., Bagnara A. S. Factors affecting the rate of purine ribonucleotide dephosphorylation in human erythrocytes. Biochim Biophys Acta. 1979 Jul 26;563(2):466–478. doi: 10.1016/0005-2787(79)90065-0. [DOI] [PubMed] [Google Scholar]
  88. Zimmermann H. 5'-Nucleotidase: molecular structure and functional aspects. Biochem J. 1992 Jul 15;285(Pt 2):345–365. doi: 10.1042/bj2850345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Zoref-Shani E., Bromberg Y., Brosh S., Sidi Y., Sperling O. Characterization of the alterations in purine nucleotide metabolism in hypoxanthine-guanine phosphoribosyltransferase-deficient rat neuroma cell line. J Neurochem. 1993 Aug;61(2):457–463. doi: 10.1111/j.1471-4159.1993.tb02146.x. [DOI] [PubMed] [Google Scholar]
  90. de Verdier C. H., Ericson A., Niklasson F., Westman M. Adenine metabolism in man. 1. After intravenous and peroral administration. Scand J Clin Lab Invest. 1977 Nov;37(7):567–575. doi: 10.3109/00365517709100648. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES