Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 15;324(Pt 3):911–915. doi: 10.1042/bj3240911

Selective release of human adipocyte fatty acids according to molecular structure.

T Raclot 1, D Langin 1, M Lafontan 1, R Groscolas 1
PMCID: PMC1218508  PMID: 9210416

Abstract

The objective of the present study was to investigate the mobilization of individual fatty acids from human white fat cells. Mammary adipose tissue from eight healthy non-obese women in their normal dietary state was collected, and isolated adipocytes were incubated with lipolytic agents. The mobilization of 34 individual fatty acids was measured by comparing the composition of non-esterified fatty acids (NEFA) with that of the triacylglycerols (TAG) from which they originated through lipolysis. Compared with TAG, NEFA were enriched in some polyunsaturated fatty acids with 18-20 carbon atoms. Conversely, the percentage of very-long-chain (20-22 carbon atoms) saturated and monounsaturated fatty acids was approx. 2 times lower in NEFA than in TAG. The relative mobilization (% in NEFA/% in TAG) of the most readily mobilized fatty acid (C20:5, n-3; 2.25) was more than 6-fold higher than that of the least readily mobilized (C22:1,n-11; 0.37). Relationships were found between the molecular structure of fatty acids and their mobilization rate. For a given chain length, the relative mobilization rate increased with increasing unsaturation, whereas for a given unsaturation, it decreased with increasing chain length. The relative mobilization rate for essential fatty acids decreased in the following order: C20:5,n-3>C20:4,n-6>C18:3,n-3>C18:2, n-6>C22:6,n-3. Interestingly, C20:5,n-3 and C20:4,n-6, which are respectively precursors of the 3- and 2-series of prostaglandins, were preferentially mobilized. It is concluded that fatty acids are selectively mobilized from human fat cells according to molecular structure, in full agreement with animal studies. By modulating the qualitative fatty acid supply to organs and by remodelling the fatty acid composition of adipose tissue, this selectivity would be relevant for consideration in physiology, health and epidemiology.

Full Text

The Full Text of this article is available as a PDF (292.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bougnoux P., Koscielny S., Chajès V., Descamps P., Couet C., Calais G. alpha-Linolenic acid content of adipose breast tissue: a host determinant of the risk of early metastasis in breast cancer. Br J Cancer. 1994 Aug;70(2):330–334. doi: 10.1038/bjc.1994.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Calder P. C., Newsholme E. A. Polyunsaturated fatty acids suppress human peripheral blood lymphocyte proliferation and interleukin-2 production. Clin Sci (Lond) 1992 Jun;82(6):695–700. doi: 10.1042/cs0820695. [DOI] [PubMed] [Google Scholar]
  3. Clandinin M. T., Cheema S., Field C. J., Garg M. L., Venkatraman J., Clandinin T. R. Dietary fat: exogenous determination of membrane structure and cell function. FASEB J. 1991 Oct;5(13):2761–2769. doi: 10.1096/fasebj.5.13.1916101. [DOI] [PubMed] [Google Scholar]
  4. Clarke S. D., Jump D. B. Dietary polyunsaturated fatty acid regulation of gene transcription. Annu Rev Nutr. 1994;14:83–98. doi: 10.1146/annurev.nu.14.070194.000503. [DOI] [PubMed] [Google Scholar]
  5. Conner W. E., Lin D. S., Colvis C. Differential mobilization of fatty acids from adipose tissue. J Lipid Res. 1996 Feb;37(2):290–298. [PubMed] [Google Scholar]
  6. Coppack S. W., Jensen M. D., Miles J. M. In vivo regulation of lipolysis in humans. J Lipid Res. 1994 Feb;35(2):177–193. [PubMed] [Google Scholar]
  7. Das U. N. Gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid as potential anticancer drugs. Nutrition. 1990 Nov-Dec;6(6):429–434. [PubMed] [Google Scholar]
  8. Frayn K. N., Williams C. M., Arner P. Are increased plasma non-esterified fatty acid concentrations a risk marker for coronary heart disease and other chronic diseases? Clin Sci (Lond) 1996 Apr;90(4):243–253. doi: 10.1042/cs0900243. [DOI] [PubMed] [Google Scholar]
  9. Gavino V. C., Gavino G. R. Adipose hormone-sensitive lipase preferentially releases polyunsaturated fatty acids from triglycerides. Lipids. 1992 Dec;27(12):950–954. doi: 10.1007/BF02535570. [DOI] [PubMed] [Google Scholar]
  10. Halliwell K. J., Fielding B. A., Samra J. S., Humphreys S. M., Frayn K. N. Release of individual fatty acids from human adipose tissue in vivo after an overnight fast. J Lipid Res. 1996 Sep;37(9):1842–1848. [PubMed] [Google Scholar]
  11. Harper J. F. Peritz' F test: basic program of a robust multiple comparison test for statistical analysis of all differences among group means. Comput Biol Med. 1984;14(4):437–445. doi: 10.1016/0010-4825(84)90044-1. [DOI] [PubMed] [Google Scholar]
  12. Hudgins L. C., Hirsch J. Changes in abdominal and gluteal adipose-tissue fatty acid compositions in obese subjects after weight gain and weight loss. Am J Clin Nutr. 1991 Jun;53(6):1372–1377. doi: 10.1093/ajcn/53.6.1372. [DOI] [PubMed] [Google Scholar]
  13. Jump D. B., Clarke S. D., Thelen A., Liimatta M. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J Lipid Res. 1994 Jun;35(6):1076–1084. [PubMed] [Google Scholar]
  14. Kliewer S. A., Lenhard J. M., Willson T. M., Patel I., Morris D. C., Lehmann J. M. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995 Dec 1;83(5):813–819. doi: 10.1016/0092-8674(95)90194-9. [DOI] [PubMed] [Google Scholar]
  15. Lands W. E. Biochemistry and physiology of n-3 fatty acids. FASEB J. 1992 May;6(8):2530–2536. doi: 10.1096/fasebj.6.8.1592205. [DOI] [PubMed] [Google Scholar]
  16. Marckmann P., Lassen A., Haraldsdóttir J., Sandström B. Biomarkers of habitual fish intake in adipose tissue. Am J Clin Nutr. 1995 Nov;62(5):956–959. doi: 10.1093/ajcn/62.5.956. [DOI] [PubMed] [Google Scholar]
  17. Marcus A. J., Hajjar D. P. Vascular transcellular signaling. J Lipid Res. 1993 Dec;34(12):2017–2031. [PubMed] [Google Scholar]
  18. Mougios V., Kotzamanidis C., Koutsari C., Atsopardis S. Exercise-induced changes in the concentration of individual fatty acids and triacylglycerols of human plasma. Metabolism. 1995 May;44(5):681–688. doi: 10.1016/0026-0495(95)90129-9. [DOI] [PubMed] [Google Scholar]
  19. Murphy M. G. Dietary fatty acids and membrane protein function. J Nutr Biochem. 1990 Feb;1(2):68–79. doi: 10.1016/0955-2863(90)90052-m. [DOI] [PubMed] [Google Scholar]
  20. Opara E. C., Garfinkel M., Hubbard V. S., Burch W. M., Akwari O. E. Effect of fatty acids on insulin release: role of chain length and degree of unsaturation. Am J Physiol. 1994 Apr;266(4 Pt 1):E635–E639. doi: 10.1152/ajpendo.1994.266.4.E635. [DOI] [PubMed] [Google Scholar]
  21. Phinney S. D., Tang A. B., Johnson S. B., Holman R. T. Reduced adipose 18:3 omega 3 with weight loss by very low calorie dieting. Lipids. 1990 Dec;25(12):798–806. doi: 10.1007/BF02535900. [DOI] [PubMed] [Google Scholar]
  22. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  23. Raclot T., Groscolas R. Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. J Lipid Res. 1993 Sep;34(9):1515–1526. [PubMed] [Google Scholar]
  24. Raclot T., Groscolas R. Individual fish-oil n-3 polyunsaturated fatty acid deposition and mobilization rates for adipose tissue of rats in a nutritional steady state. Am J Clin Nutr. 1994 Jul;60(1):72–78. doi: 10.1093/ajcn/60.1.72. [DOI] [PubMed] [Google Scholar]
  25. Raclot T., Groscolas R. Selective mobilization of adipose tissue fatty acids during energy depletion in the rat. J Lipid Res. 1995 Oct;36(10):2164–2173. [PubMed] [Google Scholar]
  26. Raclot T., Mioskowski E., Bach A. C., Groscolas R. Selectivity of fatty acid mobilization: a general metabolic feature of adipose tissue. Am J Physiol. 1995 Nov;269(5 Pt 2):R1060–R1067. doi: 10.1152/ajpregu.1995.269.5.R1060. [DOI] [PubMed] [Google Scholar]
  27. Raclot T. Selective mobilization of fatty acids from white fat cells: evidence for a relationship to the polarity of triacylglycerols. Biochem J. 1997 Mar 1;322(Pt 2):483–489. doi: 10.1042/bj3220483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shimizu T., Wolfe L. S. Arachidonic acid cascade and signal transduction. J Neurochem. 1990 Jul;55(1):1–15. doi: 10.1111/j.1471-4159.1990.tb08813.x. [DOI] [PubMed] [Google Scholar]
  29. Sutherland W. H., Woodhouse S. P., Heyworth M. R. Physical training and adipose tissue fatty acid composition in men. Metabolism. 1981 Sep;30(9):839–844. doi: 10.1016/0026-0495(81)90061-5. [DOI] [PubMed] [Google Scholar]
  30. Tang A. B., Nishimura K. Y., Phinney S. D. Preferential reduction in adipose tissue alpha-linolenic acid (18:3 omega 3) during very low calorie dieting despite supplementation with 18:3 omega 3. Lipids. 1993 Nov;28(11):987–993. doi: 10.1007/BF02537119. [DOI] [PubMed] [Google Scholar]
  31. Tavernier G., Barbe P., Galitzky J., Berlan M., Caput D., Lafontan M., Langin D. Expression of beta3-adrenoceptors with low lipolytic action in human subcutaneous white adipocytes. J Lipid Res. 1996 Jan;37(1):87–97. [PubMed] [Google Scholar]
  32. Tjønneland A., Overvad K., Thorling E., Ewertz M. Adipose tissue fatty acids as biomarkers of dietary exposure in Danish men and women. Am J Clin Nutr. 1993 May;57(5):629–633. doi: 10.1093/ajcn/57.5.629. [DOI] [PubMed] [Google Scholar]
  33. Turpin B. P., Duckworth W. C., Solomon S. S. Perifusion of isolated rat adipose cells. Modulation of lipolysis by adenosine. J Clin Invest. 1977 Aug;60(2):442–448. doi: 10.1172/JCI108794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vassaux G., Gaillard D., Darimont C., Ailhaud G., Negrel R. Differential response of preadipocytes and adipocytes to prostacyclin and prostaglandin E2: physiological implications. Endocrinology. 1992 Nov;131(5):2393–2398. doi: 10.1210/endo.131.5.1330499. [DOI] [PubMed] [Google Scholar]
  35. van Staveren W. A., Deurenberg P., Katan M. B., Burema J., de Groot L. C., Hoffmans M. D. Validity of the fatty acid composition of subcutaneous fat tissue microbiopsies as an estimate of the long-term average fatty acid composition of the diet of separate individuals. Am J Epidemiol. 1986 Mar;123(3):455–463. doi: 10.1093/oxfordjournals.aje.a114260. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES