Abstract
Three lambda phage clones encompassing the Na+/phosphate co-transporter (NaPi-3) gene and its 5' flanking region were isolated from a human genomic DNA library. The gene comprises 13 exons and 12 introns and spans approx. 14 kb. All exon-intron junctions conform to the GT/AG rule. The major transcription-initiation site was determined by primer-extension analysis and is an adenosine residue 57 bp upstream of the 3' end of the first exon. There is a typical TATA box 28 bp upstream of the major transcription-initiation site and various cis-acting elements, including a cAMP-responsive element, AP-1, AP-2 and SP-1 sites in the 5' flanking region. This region also contains three direct-repeat-like sequences that resemble the consensus binding sequence for members of the steroid-thyroid hormone receptor superfamily, including vitamin D. Deletion analysis suggests that the region from nt-2409 to nt-1259 in the 5' flanking region may be involved in kidney-specific gene expression. Vitamin D responsiveness of the NaPi-3 promoter was also detected in COS-7 cells co-transfected with a human vitamin D receptor expression vector. The presence of the three vitamin D receptor- responsive elements in the NaPi-3 promoter may be important in mediating the enhanced expression of the gene by 1,25-dihydroxyvitamin D3.
Full Text
The Full Text of this article is available as a PDF (770.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arakawa T., Nakamura M., Yoshimoto T., Yamamoto S. The transcriptional regulation of human arachidonate 12-lipoxygenase gene by NF kappa B/Rel. FEBS Lett. 1995 Apr 17;363(1-2):105–110. doi: 10.1016/0014-5793(95)00293-i. [DOI] [PubMed] [Google Scholar]
- Arakawa T., Oshima T., Kishimoto K., Yoshimoto T., Yamamoto S. Molecular structure and function of the porcine arachidonate 12-lipoxygenase gene. J Biol Chem. 1992 Jun 15;267(17):12188–12191. [PubMed] [Google Scholar]
- Biber J., Custer M., Magagnin S., Hayes G., Werner A., Lötscher M., Kaissling B., Murer H. Renal Na/Pi-cotransporters. Kidney Int. 1996 Apr;49(4):981–985. doi: 10.1038/ki.1996.139. [DOI] [PubMed] [Google Scholar]
- Biber J., Murer H. A molecular view of renal Na-dependent phosphate transport. Ren Physiol Biochem. 1994 May-Aug;17(3-4):212–215. doi: 10.1159/000173822. [DOI] [PubMed] [Google Scholar]
- Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
- Chong S. S., Kozak C. A., Liu L., Kristjansson K., Dunn S. T., Bourdeau J. E., Hughes M. R. Cloning, genetic mapping, and expression analysis of a mouse renal sodium-dependent phosphate cotransporter. Am J Physiol. 1995 Jun;268(6 Pt 2):F1038–F1045. doi: 10.1152/ajprenal.1995.268.6.F1038. [DOI] [PubMed] [Google Scholar]
- Christakos S., Raval-Pandya M., Wernyj R. P., Yang W. Genomic mechanisms involved in the pleiotropic actions of 1,25-dihydroxyvitamin D3. Biochem J. 1996 Jun 1;316(Pt 2):361–371. doi: 10.1042/bj3160361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins J. F., Ghishan F. K. Molecular cloning, functional expression, tissue distribution, and in situ hybridization of the renal sodium phosphate (Na+/P(i)) transporter in the control and hypophosphatemic mouse. FASEB J. 1994 Aug;8(11):862–868. doi: 10.1096/fasebj.8.11.8070635. [DOI] [PubMed] [Google Scholar]
- Georgaki H., Puschett J. B. Acute effects of a "physiological" dose of 1,25-dihydroxy vitamin D3 on renal phosphate transport. Endocr Res Commun. 1982;9(2):135–143. doi: 10.1080/07435808209045759. [DOI] [PubMed] [Google Scholar]
- Hartmann C. M., Hewson A. S., Kos C. H., Hilfiker H., Soumounou Y., Murer H., Tenenhouse H. S. Structure of murine and human renal type II Na+-phosphate cotransporter genes (Npt2 and NPT2). Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7409–7414. doi: 10.1073/pnas.93.14.7409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes G., Busch A., Lötscher M., Waldegger S., Lang F., Verrey F., Biber J., Murer H. Role of N-linked glycosylation in rat renal Na/Pi-cotransport. J Biol Chem. 1994 Sep 30;269(39):24143–24149. [PubMed] [Google Scholar]
- Kurnik B. R., Hruska K. A. Effects of 1,25-dihydroxycholecalciferol on phosphate transport in vitamin D-deprived rats. Am J Physiol. 1984 Jul;247(1 Pt 2):F177–F184. doi: 10.1152/ajprenal.1984.247.1.F177. [DOI] [PubMed] [Google Scholar]
- Kurnik B. R., Hruska K. A. Mechanism of stimulation of renal phosphate transport by 1,25-dihydroxycholecalciferol. Biochim Biophys Acta. 1985 Jul 11;817(1):42–50. doi: 10.1016/0005-2736(85)90066-5. [DOI] [PubMed] [Google Scholar]
- Kurnik B. R., Huskey M., Hruska K. A. 1,25-Dihydroxycholecalciferol stimulates renal phosphate transport by directly altering membrane phosphatidylcholine composition. Biochim Biophys Acta. 1987 Jan 13;917(1):81–85. doi: 10.1016/0005-2760(87)90286-4. [DOI] [PubMed] [Google Scholar]
- Kwon H. M., Yamauchi A., Uchida S., Preston A. S., Garcia-Perez A., Burg M. B., Handler J. S. Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J Biol Chem. 1992 Mar 25;267(9):6297–6301. [PubMed] [Google Scholar]
- Levi M., Lötscher M., Sorribas V., Custer M., Arar M., Kaissling B., Murer H., Biber J. Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i). Am J Physiol. 1994 Nov;267(5 Pt 2):F900–F908. doi: 10.1152/ajprenal.1994.267.5.F900. [DOI] [PubMed] [Google Scholar]
- Li H., Xie Z. Molecular cloning of two rat Na+/Pi cotransporters: evidence for differential tissue expression of transcripts. Cell Mol Biol Res. 1995;41(5):451–460. [PubMed] [Google Scholar]
- Magagnin S., Werner A., Markovich D., Sorribas V., Stange G., Biber J., Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5979–5983. doi: 10.1073/pnas.90.13.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyamoto K., Tatsumi S., Sonoda T., Yamamoto H., Minami H., Taketani Y., Takeda E. Cloning and functional expression of a Na(+)-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression. Biochem J. 1995 Jan 1;305(Pt 1):81–85. doi: 10.1042/bj3050081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyamoto K., Tatsumi S., Yamamoto H., Katai K., Taketani Y., Morita K., Takeda E. Chromosome assignments of genes for human Na(+)-dependent phosphate co-transporters NaPi-3 and NPT-1. Tokushima J Exp Med. 1995 Jul;42(1-2):5–9. [PubMed] [Google Scholar]
- Pajor A. M., Wright E. M. Cloning and functional expression of a mammalian Na+/nucleoside cotransporter. A member of the SGLT family. J Biol Chem. 1992 Feb 25;267(6):3557–3560. [PubMed] [Google Scholar]
- Ruskin B., Green M. R. Role of the 3' splice site consensus sequence in mammalian pre-mRNA splicing. Nature. 1985 Oct 24;317(6039):732–734. doi: 10.1038/317732a0. [DOI] [PubMed] [Google Scholar]
- Sorribas V., Markovich D., Hayes G., Stange G., Forgo J., Biber J., Murer H. Cloning of a Na/Pi cotransporter from opossum kidney cells. J Biol Chem. 1994 Mar 4;269(9):6615–6621. [PubMed] [Google Scholar]
- Suzuki M., Kawaguchi Y., Momose M., Morita T., Yokoyama K., Miyahara T. 1,25-Dihydroxyvitamin D stimulates sodium-dependent phosphate transport by renal outer cortical brush-border membrane vesicles by directly affecting membrane fluidity. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1193–1198. doi: 10.1016/0006-291x(88)90755-3. [DOI] [PubMed] [Google Scholar]
- Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenenhouse H. S., Werner A., Biber J., Ma S., Martel J., Roy S., Murer H. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization. J Clin Invest. 1994 Feb;93(2):671–676. doi: 10.1172/JCI117019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turk E., Kerner C. J., Lostao M. P., Wright E. M. Membrane topology of the human Na+/glucose cotransporter SGLT1. J Biol Chem. 1996 Jan 26;271(4):1925–1934. doi: 10.1074/jbc.271.4.1925. [DOI] [PubMed] [Google Scholar]
- Turk E., Martín M. G., Wright E. M. Structure of the human Na+/glucose cotransporter gene SGLT1. J Biol Chem. 1994 May 27;269(21):15204–15209. [PubMed] [Google Scholar]
- Umesono K., Murakami K. K., Thompson C. C., Evans R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991 Jun 28;65(7):1255–1266. doi: 10.1016/0092-8674(91)90020-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verri T., Markovich D., Perego C., Norbis F., Stange G., Sorribas V., Biber J., Murer H. Cloning of a rabbit renal Na-Pi cotransporter, which is regulated by dietary phosphate. Am J Physiol. 1995 Apr;268(4 Pt 2):F626–F633. doi: 10.1152/ajprenal.1995.268.4.F626. [DOI] [PubMed] [Google Scholar]
- Werner A., Kempson S. A., Biber J., Murer H. Increase of Na/Pi-cotransport encoding mRNA in response to low Pi diet in rat kidney cortex. J Biol Chem. 1994 Mar 4;269(9):6637–6639. [PubMed] [Google Scholar]
- Werner A., Moore M. L., Mantei N., Biber J., Semenza G., Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9608–9612. doi: 10.1073/pnas.88.21.9608. [DOI] [PMC free article] [PubMed] [Google Scholar]