Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 15;324(Pt 3):935–940. doi: 10.1042/bj3240935

Modulation of cathepsin D activity in retinal pigment epithelial cells.

P E Rakoczy 1, C M Lai 1, M Baines 1, S Di Grandi 1, J H Fitton 1, I J Constable 1
PMCID: PMC1218511  PMID: 9210419

Abstract

This project used retinal pigment epithelial (RPE) cells to investigate the effects of up- and down-regulation of cathepsin D expression on the processing of cathepsin D and on the normal phagocytic and digestive function of these cells. RPE cells were transfected with a pHbetaApr-1-neo vector construct carrying the full-length sequence of the translated region of human cathepsin D in sense and antisense directions. Transfected cells were characterized for the presence and expression of the transgene by PCR amplification using transgene-specific primers. Total aspartic proteinase activity present in transformed RPE cells was measured by an enzyme assay using haemoglobin as substrate. Flow cytometry was used to quantify phagocytosis of fluorescein isothiocyanate-labelled rod outer segments (ROS), and lysosomal digestion of ROS was monitored by immunofluorescence. A 435 bp fragment was present in RPE cells carrying the cathepsin D transgene in sense and antisense orientations after PCR amplification. Expression of both 52 kDa procathepsin D and 34 kDa active cathepsin D was significantly up-regulated in sense cathepsin D-transfected RPE cells and down-regulated in RPE cells transfected with antisense cathepsin D. No other forms of cathepsin D were detected in the transfected cells, suggesting that, if pseudo-cathepsin D exists in RPE cells in vivo, it requires the presence of unknown specific regulatory elements. The up- and down-regulation of cathepsin D expression was further confirmed by enzyme assay. Transfected cells retained their phagocytosing ability after ROS challenge and maintained their ability to process ROS. The processing of ROS was significantly slower in RPE cells transfected with antisense than control vector or in sense-cathepsin D-transfected cells. These results demonstrate that cathepsin D is a major proteolytic enzyme participating in the lysosomal digestion of photoreceptor outer segments.

Full Text

The Full Text of this article is available as a PDF (277.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Martin K. J. Lysosomal enzymes in the interphotoreceptor matrix: acid protease. Curr Eye Res. 1982;2(6):359–366. doi: 10.3109/02713688209000781. [DOI] [PubMed] [Google Scholar]
  2. Augereau P., Garcia M., Mattei M. G., Cavailles V., Depadova F., Derocq D., Capony F., Ferrara P., Rochefort H. Cloning and sequencing of the 52K cathepsin D complementary deoxyribonucleic acid of MCF7 breast cancer cells and mapping on chromosome 11. Mol Endocrinol. 1988 Feb;2(2):186–192. doi: 10.1210/mend-2-2-186. [DOI] [PubMed] [Google Scholar]
  3. Boulton M., Moriarty P., Jarvis-Evans J., Marcyniuk B. Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol. 1994 Feb;78(2):125–129. doi: 10.1136/bjo.78.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cavaney D. M., Rakoczy P. E., Constable I. J. Isolation, sequencing and tissue distribution of a partial cathepsin D cDNA clone from human RPE cells. Aust N Z J Ophthalmol. 1996 May;24(2 Suppl):75–78. doi: 10.1111/j.1442-9071.1996.tb01003.x. [DOI] [PubMed] [Google Scholar]
  5. Feeney L., Mixon R. N. An in vitro model of phagocytosis in bovine and human retinal pigment epithelium. Exp Eye Res. 1976 May;22(5):533–548. doi: 10.1016/0014-4835(76)90190-1. [DOI] [PubMed] [Google Scholar]
  6. Gunning P., Leavitt J., Muscat G., Ng S. Y., Kedes L. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4831–4835. doi: 10.1073/pnas.84.14.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hall M. O., Abrams T. Kinetic studies of rod outer segment binding and ingestion by cultured rat RPE cells. Exp Eye Res. 1987 Dec;45(6):907–922. doi: 10.1016/s0014-4835(87)80105-7. [DOI] [PubMed] [Google Scholar]
  8. Kennedy C. J., Rakoczy P. E., Constable I. J. A simple flow cytometric technique to quantify rod outer segment phagocytosis in cultured retinal pigment epithelial cells. Curr Eye Res. 1996 Sep;15(9):998–1003. doi: 10.3109/02713689609017646. [DOI] [PubMed] [Google Scholar]
  9. Kennedy C. J., Rakoczy P. E., Robertson T. A., Papadimitriou J. M., Constable I. J. Kinetic studies on phagocytosis and lysosomal digestion of rod outer segments by human retinal pigment epithelial cells in vitro. Exp Cell Res. 1994 Feb;210(2):209–214. doi: 10.1006/excr.1994.1031. [DOI] [PubMed] [Google Scholar]
  10. Liaudet E., Derocq D., Rochefort H., Garcia M. Transfected cathepsin D stimulates high density cancer cell growth by inactivating secreted growth inhibitors. Cell Growth Differ. 1995 Sep;6(9):1045–1052. [PubMed] [Google Scholar]
  11. Lin C. S., Ng S. Y., Gunning P., Kedes L., Leavitt J. Identification and order of sequential mutations in beta-actin genes isolated from increasingly tumorigenic human fibroblast strains. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6995–6999. doi: 10.1073/pnas.82.20.6995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mullen R. J., LaVail M. M. Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science. 1976 May 21;192(4241):799–801. doi: 10.1126/science.1265483. [DOI] [PubMed] [Google Scholar]
  13. Porrello K., Yasumura D., La Vail M. M. The interphotoreceptor matrix in RCS rats: histochemical analysis and correlation with the rate of retinal degeneration. Exp Eye Res. 1986 Sep;43(3):413–429. doi: 10.1016/s0014-4835(86)80077-x. [DOI] [PubMed] [Google Scholar]
  14. Rakoczy P. E., Baines M., Kennedy C. J., Constable I. J. Correlation between autofluorescent debris accumulation and the presence of partially processed forms of cathepsin D in cultured retinal pigment epithelial cells challenged with rod outer segments. Exp Eye Res. 1996 Aug;63(2):159–167. doi: 10.1006/exer.1996.0104. [DOI] [PubMed] [Google Scholar]
  15. Rakoczy P. E., Mann K., Cavaney D. M., Robertson T., Papadimitreou J., Constable I. J. Detection and possible functions of a cysteine protease involved in digestion of rod outer segments by retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1994 Nov;35(12):4100–4108. [PubMed] [Google Scholar]
  16. Rakoczy P., Kennedy C., Thompson-Wallis D., Mann K., Constable I. Changes in retinal pigment epithelial cell autofluorescence and protein expression associated with phagocytosis of rod outer segments in vitro. Biol Cell. 1992;76(1):49–54. doi: 10.1016/0248-4900(92)90194-6. [DOI] [PubMed] [Google Scholar]
  17. Regan C. M., de Grip W. J., Daemen F. J., Bonting S. L. Degradation of rhodopsin by a lysosomal fraction of retinal pigment epithelium: biochemical aspects of the visual process. XLI. Exp Eye Res. 1980 Feb;30(2):183–191. doi: 10.1016/0014-4835(80)90112-8. [DOI] [PubMed] [Google Scholar]
  18. Richo G. R., Conner G. E. Structural requirements of procathepsin D activation and maturation. J Biol Chem. 1994 May 20;269(20):14806–14812. [PubMed] [Google Scholar]
  19. Richo G., Conner G. E. Proteolytic activation of human procathepsin D. Adv Exp Med Biol. 1991;306:289–296. doi: 10.1007/978-1-4684-6012-4_35. [DOI] [PubMed] [Google Scholar]
  20. Rochefort H. Biological and clinical significance of cathepsin D in breast cancer. Semin Cancer Biol. 1990 Apr;1(2):153–160. [PubMed] [Google Scholar]
  21. Rochefort H., Capony F., Garcia M. Cathepsin D: a protease involved in breast cancer metastasis. Cancer Metastasis Rev. 1990 Dec;9(4):321–331. doi: 10.1007/BF00049522. [DOI] [PubMed] [Google Scholar]
  22. Saleh M., Stacker S. A., Wilks A. F. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res. 1996 Jan 15;56(2):393–401. [PubMed] [Google Scholar]
  23. Weinander R., Mosialou E., DeJong J., Tu C. P., Dypbukt J., Bergman T., Barnes H. J., Hög J. O., Morgenstern R. Heterologous expression of rat liver microsomal glutathione transferase in simian COS cells and Escherichia coli. Biochem J. 1995 Nov 1;311(Pt 3):861–866. doi: 10.1042/bj3110861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yamada T., Hara S., Tamai M. Immunohistochemical localization of cathepsin D in ocular tissues. Invest Ophthalmol Vis Sci. 1990 Jul;31(7):1217–1223. [PubMed] [Google Scholar]
  25. Young R. W. The renewal of photoreceptor cell outer segments. J Cell Biol. 1967 Apr;33(1):61–72. doi: 10.1083/jcb.33.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zimmerman W. F., Godchaux W., 3rd, Belkin M. The relative proportions of lysosomal enzyme activities in bovine retinal pigment epithelium. Exp Eye Res. 1983 Jan;36(1):151–158. doi: 10.1016/0014-4835(83)90098-2. [DOI] [PubMed] [Google Scholar]
  27. el-Hifnawi E., Kühnel W., el-Hifnawi A., Laqua H. Localization of lysosomal enzymes in the retina and retinal pigment epithelium of RCS rats. Ann Anat. 1994 Dec;176(6):505–513. doi: 10.1016/s0940-9602(11)80384-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES