Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 15;324(Pt 3):951–956. doi: 10.1042/bj3240951

Purification and properties of alpha-mannosidase II from Golgi-like membranes of baculovirus-infected Spodoptera frugiperda (IPLB-SF-21AE) cells.

J Ren 1, F J Castellino 1, R K Bretthauer 1
PMCID: PMC1218513  PMID: 9210421

Abstract

An alpha-mannosidase II-like activity was identified in baculovirus-infected Spodoptera frugiperda (IPLB-SF21-AE) cells. The enzyme responsible was purified from Golgi-type membranes to apparent homogeneity by using a combination of steps including DEAE-cellulose, hydroxyapatite, concanavalin A-Sepharose and gel filtration chromatography. The molecular mass of this purified protein was approx. 120 kDa by SDS/PAGE under reducing conditions and approx. 240 kDa under non-reducing conditions, indicating that the enzyme is a disulphide-linked dimer. Substrates demonstrated to undergo hydrolysis with this enzyme were GlcNAc-Man5-GlcNAc-GlcNAc (non-reduced and reduced) and p-nitrophenyl alpha-d-mannopyranoside. The oligosaccharide substrate was converted into GlcNAc-Man3-GlcNAc-GlcNAc through an intermediate GlcNAc-Man4-GlcNAc-GlcNAc. Treatment of the isolated intermediate oligosaccharide with endoglycosidase H resulted in its conversion into GlcNAc-Man4-GlcNAc. This indicated that it contained the alpha-1,3-linked mannose residue on the alpha-1,6-linked mannose arm and showed that the alpha-1,6-linked mannose residue on the alpha-1,6-linked mannose arm had been preferentially hydrolysed by the mannosidase. The oligosaccharide lacking the beta-1,2-linked GlcNAc residue on the alpha-1,3-linked mannose arm (Man5-GlcNAc-GlcNAc) was not hydrolysed in the presence of the enzyme. Metal ions were not required for enzymic activity on any of the substrates, but Cu2+ was strongly inhibitory. The activity of the enzyme was inhibited at low concentrations of swainsonine, but much higher concentrations of 1-deoxymannojirimycin were required to achieve inhibition. All of these properties are characteristic of mannosidase II enzymes from other eukaryotic tissues. The presence of mannosidase II in lepidopteran insect cells would allow entry of N-linked glycoproteins into the complex processing reaction pathway or into the terminal Man3-GlcNAc-GlcNAc pathway.

Full Text

The Full Text of this article is available as a PDF (272.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann F., Kornfeld G., Dalik T., Staudacher E., Glössl J. Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology. 1993 Dec;3(6):619–625. doi: 10.1093/glycob/3.6.619. [DOI] [PubMed] [Google Scholar]
  2. Altmann F., März L. Processing of asparagine-linked oligosaccharides in insect cells: evidence for alpha-mannosidase II. Glycoconj J. 1995 Apr;12(2):150–155. doi: 10.1007/BF00731359. [DOI] [PubMed] [Google Scholar]
  3. Altmann F., Schwihla H., Staudacher E., Glössl J., März L. Insect cells contain an unusual, membrane-bound beta-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem. 1995 Jul 21;270(29):17344–17349. doi: 10.1074/jbc.270.29.17344. [DOI] [PubMed] [Google Scholar]
  4. Butters T. D., Hughes R. C. Isolation and characterization of mosquito cell membrane glycoproteins. Biochim Biophys Acta. 1981 Feb 6;640(3):655–671. doi: 10.1016/0005-2736(81)90096-1. [DOI] [PubMed] [Google Scholar]
  5. Butters T. D., Hughes R. C., Vischer P. Steps in the biosynthesis of mosquito cell membrane glycoproteins and the effects of tunicamycin. Biochim Biophys Acta. 1981 Feb 6;640(3):672–686. doi: 10.1016/0005-2736(81)90097-3. [DOI] [PubMed] [Google Scholar]
  6. Davidson D. J., Bretthauer R. K., Castellino F. J. alpha-Mannosidase-catalyzed trimming of high-mannose glycans in noninfected and baculovirus-infected Spodoptera frugiperda cells (IPLB-SF-21AE). A possible contributing regulatory mechanism for assembly of complex-type oligosaccharides in infected cells. Biochemistry. 1991 Oct 15;30(41):9811–9815. doi: 10.1021/bi00105a001. [DOI] [PubMed] [Google Scholar]
  7. Davidson D. J., Castellino F. J. Structures of the asparagine-289-linked oligosaccharides assembled on recombinant human plasminogen expressed in a Mamestra brassicae cell line (IZD-MBO503). Biochemistry. 1991 Jul 9;30(27):6689–6696. doi: 10.1021/bi00241a008. [DOI] [PubMed] [Google Scholar]
  8. Davidson D. J., Fraser M. J., Castellino F. J. Oligosaccharide processing in the expression of human plasminogen cDNA by lepidopteran insect (Spodoptera frugiperda) cells. Biochemistry. 1990 Jun 12;29(23):5584–5590. doi: 10.1021/bi00475a024. [DOI] [PubMed] [Google Scholar]
  9. Hsieh P., Robbins P. W. Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells. J Biol Chem. 1984 Feb 25;259(4):2375–2382. [PubMed] [Google Scholar]
  10. Kaushal G. P., Szumilo T., Pastuszak I., Elbein A. D. Purification to homogeneity and properties of mannosidase II from mung bean seedlings. Biochemistry. 1990 Feb 27;29(8):2168–2176. doi: 10.1021/bi00460a030. [DOI] [PubMed] [Google Scholar]
  11. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  12. Kubelka V., Altmann F., Kornfeld G., März L. Structures of the N-linked oligosaccharides of the membrane glycoproteins from three lepidopteran cell lines (Sf-21, IZD-Mb-0503, Bm-N). Arch Biochem Biophys. 1994 Jan;308(1):148–157. doi: 10.1006/abbi.1994.1021. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Moremen K. W., Touster O. Biosynthesis and modification of Golgi mannosidase II in HeLa and 3T3 cells. J Biol Chem. 1985 Jun 10;260(11):6654–6662. [PubMed] [Google Scholar]
  15. Moremen K. W., Touster O., Robbins P. W. Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact enzyme. J Biol Chem. 1991 Sep 5;266(25):16876–16885. [PubMed] [Google Scholar]
  16. Moremen K. W., Trimble R. B., Herscovics A. Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology. 1994 Apr;4(2):113–125. doi: 10.1093/glycob/4.2.113. [DOI] [PubMed] [Google Scholar]
  17. Ren J., Bretthauer R. K., Castellino F. J. Purification and properties of a Golgi-derived (alpha 1,2)-mannosidase-I from baculovirus-infected lepidopteran insect cells (IPLB-SF21AE) with preferential activity toward mannose6-N-acetylglucosamine2. Biochemistry. 1995 Feb 28;34(8):2489–2495. doi: 10.1021/bi00008a012. [DOI] [PubMed] [Google Scholar]
  18. Sagami H., Lennarz W. J. Glycoprotein synthesis in Drosophila Kc cells. Biosynthesis of dolichol-linked saccharides. J Biol Chem. 1987 Nov 15;262(32):15610–15617. [PubMed] [Google Scholar]
  19. Slusarewicz P., Warren G. 1-Deoxymannojirimycin is a non-competitive inhibitor of mannosidase II. Glycobiology. 1995 Mar;5(2):154–155. doi: 10.1093/glycob/5.2.154. [DOI] [PubMed] [Google Scholar]
  20. Staudacher E., Kubelka V., März L. Distinct N-glycan fucosylation potentials of three lepidopteran cell lines. Eur J Biochem. 1992 Aug 1;207(3):987–993. doi: 10.1111/j.1432-1033.1992.tb17134.x. [DOI] [PubMed] [Google Scholar]
  21. Tulsiani D. R., Opheim D. J., Touster O. Purification and characterization of alpha-D-mannosidase from rat liver golgi membranes. J Biol Chem. 1977 May 25;252(10):3227–3233. [PubMed] [Google Scholar]
  22. Velardo M. A., Bretthauer R. K., Boutaud A., Reinhold B., Reinhold V. N., Castellino F. J. The presence of UDP-N-acetylglucosamine:alpha-3-D-mannoside beta 1,2-N-acetylglucosaminyltransferase I activity in Spodoptera frugiperda cells (IPLB-SF-21AE) and its enhancement as a result of baculovirus infection. J Biol Chem. 1993 Aug 25;268(24):17902–17907. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES