Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jun 15;324(Pt 3):971–980. doi: 10.1042/bj3240971

Oligomycin inhibits store-operated channels by a mechanism independent of its effects on mitochondrial ATP.

J H Cho 1, M Balasubramanyam 1, G Chernaya 1, J P Gardner 1, A Aviv 1, J P Reeves 1, P G Dargis 1, E P Christian 1
PMCID: PMC1218516  PMID: 9210424

Abstract

Inhibitors of mitochondrial oxidative metabolism have been proposed to interfere with Ca2+ influx mediated by store-operated channels (SOC), secondary to their effects on ATP production. We assessed SOC activity by 45Ca2+ influx and fluorimetric measurements of free Ca2+ or Mn2+ quench in thapsigargin-treated Chinese hamster ovary cells and Jurkat T-cells, and additionally by electrophysiological measurements of the Ca2+-release-activated Ca2+ current (Icrac) in Jurkat T-cells. Various mitochondrial antagonists were confirmed to inhibit SOC. However, the following evidence supported the proposal that oligomycin, in particular, exerts an inhibitory effect on SOC in addition to its known actions on mitochondria and Na+-pump activity: (i) the concentrations of oligomycin required to inhibit SOC-mediated Ca2+ influx or Icrac (half-inhibitory concentration approximately 2 microM) were nearly 50-fold higher than the concentrations that blocked mitochondrial ATP production; (ii) the rank order of potency of oligomycins A, B and C for decreasing SOC-mediated Ca2+ influx or Icrac differed from that known for inhibition of mitochondrial function; (iii) oligomycin blocked Icrac under voltage clamp and with intracellular Na+ and K+ concentrations fixed by dialysis from the patch pipette, arguing that the effect was not secondary to membrane polarization or pump activity; and (iv) fixing the cytosolic ATP concentration by dialysis from the patch pipette attenuated rotenone- but not oligomycin-mediated inhibition of Icrac. Oligomycin also blocked volume-activated Cl- currents, a profile common to some other known blockers of SOC that are not known mitochondrial inhibitors. These findings raise the possibility that oligomycin interacts directly with SOC, and thus may extend the known pharmacological profile for this type of Ca2+-influx pathway.

Full Text

The Full Text of this article is available as a PDF (756.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J., Montero M., Garcia-Sancho J. Cytochrome P450 may regulate plasma membrane Ca2+ permeability according to the filling state of the intracellular Ca2+ stores. FASEB J. 1992 Jan 6;6(2):786–792. doi: 10.1096/fasebj.6.2.1537469. [DOI] [PubMed] [Google Scholar]
  2. Alvarez J., Montero M., García-Sancho J. Cytochrome P-450 may link intracellular Ca2+ stores with plasma membrane Ca2+ influx. Biochem J. 1991 Feb 15;274(Pt 1):193–197. doi: 10.1042/bj2740193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bode H. P., Netter K. J. Agonist-releasable intracellular calcium stores and the phenomenon of store-dependent calcium entry. A novel hypothesis based on calcium stores in organelles of the endo- and exocytotic apparatus. Biochem Pharmacol. 1996 Apr 26;51(8):993–1001. doi: 10.1016/0006-2952(96)00048-2. [DOI] [PubMed] [Google Scholar]
  5. Christian E. P., Spence K. T., Togo J. A., Dargis P. G., Patel J. Calcium-dependent enhancement of depletion-activated calcium current in Jurkat T lymphocytes. J Membr Biol. 1996 Mar;150(1):63–71. doi: 10.1007/s002329900030. [DOI] [PubMed] [Google Scholar]
  6. Christian E. P., Spence K. T., Togo J. A., Dargis P. G., Warawa E. Extracellular site for econazole-mediated block of Ca2+ release-activated Ca2+ current (Icrac) in T lymphocytes. Br J Pharmacol. 1996 Oct;119(4):647–654. doi: 10.1111/j.1476-5381.1996.tb15722.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clementi E., Martini A., Stefani G., Meldolesi J., Volpe P. LU52396, an inhibitor of the store-dependent (capacitative) Ca2+ influx. Eur J Pharmacol. 1995 Mar 15;289(1):23–31. doi: 10.1016/0922-4106(95)90164-7. [DOI] [PubMed] [Google Scholar]
  8. Condrescu M., Gardner J. P., Chernaya G., Aceto J. F., Kroupis C., Reeves J. P. ATP-dependent regulation of sodium-calcium exchange in Chinese hamster ovary cells transfected with the bovine cardiac sodium-calcium exchanger. J Biol Chem. 1995 Apr 21;270(16):9137–9146. doi: 10.1074/jbc.270.16.9137. [DOI] [PubMed] [Google Scholar]
  9. Dolmetsch R. E., Lewis R. S. Signaling between intracellular Ca2+ stores and depletion-activated Ca2+ channels generates [Ca2+]i oscillations in T lymphocytes. J Gen Physiol. 1994 Mar;103(3):365–388. doi: 10.1085/jgp.103.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fahn S., Koval G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. I. An associated sodium-activated transphosphorylation. J Biol Chem. 1966 Apr 25;241(8):1882–1889. [PubMed] [Google Scholar]
  11. Gamberucci A., Innocenti B., Fulceri R., Bànhegyi G., Giunti R., Pozzan T., Benedetti A. Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. J Biol Chem. 1994 Sep 23;269(38):23597–23602. [PubMed] [Google Scholar]
  12. Gericke M., Oike M., Droogmans G., Nilius B. Inhibition of capacitative Ca2+ entry by a Cl- channel blocker in human endothelial cells. Eur J Pharmacol. 1994 Nov 15;269(3):381–384. doi: 10.1016/0922-4106(94)90046-9. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Hoth M., Penner R. Calcium release-activated calcium current in rat mast cells. J Physiol. 1993 Jun;465:359–386. doi: 10.1113/jphysiol.1993.sp019681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Innocenti B., Pozzan T., Fasolato C. Intracellular ADP modulates the Ca2+ release-activated Ca2+ current in a temperature- and Ca2+-dependent Way. J Biol Chem. 1996 Apr 12;271(15):8582–8587. doi: 10.1074/jbc.271.15.8582. [DOI] [PubMed] [Google Scholar]
  17. Jackson T. R., Patterson S. I., Thastrup O., Hanley M. R. A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J. 1988 Jul 1;253(1):81–86. doi: 10.1042/bj2530081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kremer S. G., Zeng W., Hurst R., Ning T., Whiteside C., Skorecki K. L. Chloride is required for receptor-mediated divalent cation entry in mesangial cells. J Cell Physiol. 1995 Jan;162(1):15–25. doi: 10.1002/jcp.1041620104. [DOI] [PubMed] [Google Scholar]
  19. LARDY H. A., WITONSKY P., JOHNSON D. ANTIBIOTICS AS TOOLS FOR METABOLIC STUDIES. IV. COMPARATIVE EFFECTIVENESS OF OLIGOMYCINS A, B, C, AND RUTAMYCIN AS INHIBITORS OF PHOSPHORYL TRANSFER REACTIONS IN MITOCHONDRIA. Biochemistry. 1965 Mar;4:552–554. doi: 10.1021/bi00879a027. [DOI] [PubMed] [Google Scholar]
  20. Lewis R. S., Cahalan M. D. Potassium and calcium channels in lymphocytes. Annu Rev Immunol. 1995;13:623–653. doi: 10.1146/annurev.iy.13.040195.003203. [DOI] [PubMed] [Google Scholar]
  21. Lewis R. S., Ross P. E., Cahalan M. D. Chloride channels activated by osmotic stress in T lymphocytes. J Gen Physiol. 1993 Jun;101(6):801–826. doi: 10.1085/jgp.101.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lytton J., Westlin M., Hanley M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991 Sep 15;266(26):17067–17071. [PubMed] [Google Scholar]
  23. Marriott I., Mason M. J. ATP depletion inhibits capacitative Ca2+ entry in rat thymic lymphocytes. Am J Physiol. 1995 Sep;269(3 Pt 1):C766–C774. doi: 10.1152/ajpcell.1995.269.3.C766. [DOI] [PubMed] [Google Scholar]
  24. Mason M. J., Mayer B., Hymel L. J. Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole, and SKF 96365. Am J Physiol. 1993 Mar;264(3 Pt 1):C654–C662. doi: 10.1152/ajpcell.1993.264.3.C654. [DOI] [PubMed] [Google Scholar]
  25. McDonald T. V., Premack B. A., Gardner P. Flash photolysis of caged inositol 1,4,5-trisphosphate activates plasma membrane calcium current in human T cells. J Biol Chem. 1993 Feb 25;268(6):3889–3896. [PubMed] [Google Scholar]
  26. Merritt J. E., Armstrong W. P., Benham C. D., Hallam T. J., Jacob R., Jaxa-Chamiec A., Leigh B. K., McCarthy S. A., Moores K. E., Rink T. J. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990 Oct 15;271(2):515–522. doi: 10.1042/bj2710515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Negulescu P. A., Shastri N., Cahalan M. D. Intracellular calcium dependence of gene expression in single T lymphocytes. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2873–2877. doi: 10.1073/pnas.91.7.2873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nieminen A. L., Saylor A. K., Herman B., Lemasters J. J. ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition. Am J Physiol. 1994 Jul;267(1 Pt 1):C67–C74. doi: 10.1152/ajpcell.1994.267.1.C67. [DOI] [PubMed] [Google Scholar]
  29. Parekh A. B., Penner R. Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7907–7911. doi: 10.1073/pnas.92.17.7907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Petersen C. C., Berridge M. J. G-protein regulation of capacitative calcium entry may be mediated by protein kinases A and C in Xenopus oocytes. Biochem J. 1995 May 1;307(Pt 3):663–668. doi: 10.1042/bj3070663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pijuan V., Zhuang Y., Smith L., Kroupis C., Condrescu M., Aceto J. F., Reeves J. P., Smith J. B. Stable expression of the cardiac sodium-calcium exchanger in CHO cells. Am J Physiol. 1993 Apr;264(4 Pt 1):C1066–C1074. doi: 10.1152/ajpcell.1993.264.4.C1066. [DOI] [PubMed] [Google Scholar]
  32. Premack B. A., McDonald T. V., Gardner P. Activation of Ca2+ current in Jurkat T cells following the depletion of Ca2+ stores by microsomal Ca(2+)-ATPase inhibitors. J Immunol. 1994 Jun 1;152(11):5226–5240. [PubMed] [Google Scholar]
  33. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  34. Reinsprecht M., Rohn M. H., Spadinger R. J., Pecht I., Schindler H., Romanin C. Blockade of capacitive Ca2+ influx by Cl- channel blockers inhibits secretion from rat mucosal-type mast cells. Mol Pharmacol. 1995 May;47(5):1014–1020. [PubMed] [Google Scholar]
  35. Sage S. O., Merritt J. E., Hallam T. J., Rink T. J. Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J. 1989 Mar 15;258(3):923–926. doi: 10.1042/bj2580923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vigers G. A., Ziegler F. D. Azide inhibition of mitochondrial ATPase. Biochem Biophys Res Commun. 1968 Jan 11;30(1):83–88. doi: 10.1016/0006-291x(68)90716-x. [DOI] [PubMed] [Google Scholar]
  37. Zweifach A., Lewis R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6295–6299. doi: 10.1073/pnas.90.13.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zweifach A., Lewis R. S. Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol. 1995 Feb;105(2):209–226. doi: 10.1085/jgp.105.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES