Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 1;325(Pt 1):53–61. doi: 10.1042/bj3250053

Importance of aspartate-70 in organophosphate inhibition, oxime re-activation and aging of human butyrylcholinesterase.

P Masson 1, M T Froment 1, C F Bartels 1, O Lockridge 1
PMCID: PMC1218528  PMID: 9224629

Abstract

Asp-70 is the defining amino acid in the peripheral anionic site of human butyrylcholinesterase (BuChE), whereas acetylcholinesterase has several additional amino acids, the most important one being Trp-277 (Trp-279 in Torpedo AChE). We studied mutants D70G, D70K and A277W to evaluate the role of Asp-70 and Trp-277 in reactions with organophosphates. We found that Asp-70 was important for binding positively charged echothiophate, but not neutral paraoxon and iso-OMPA. Asp-70 was also important for binding of positively charged pralidoxime (2-PAM) and for activation of re-activation by excess 2-PAM. Excess 2-PAM had an effect similar to substrate activation, suggesting the binding of 2 mol of 2-PAM to wild-type but not to the D70G mutant. A surprising result was that Asp-70 was important for irreversible aging, the D70G mutant having a 3- and 8-fold lower rate of aging for paraoxon-inhibited and di-isopropyl fluorophosphate-inhibited BuChE. Mutants of Asp-70 had the same rate constants for phosphorylation and re-activation by 2-PAM as wild-type. The A277W mutant behaved like wild-type in all assays. Our results predict that people with the atypical (D70G) variant of BuChE will be more sensitive to the toxic effects of echothiophate, but will be equally sensitive to paraoxon and di-isopropyl fluorophosphate. People with the D70G mutation will be resistant to re-activation of their inhibited BuChE by 2-PAM, but this will be offset by the lower rate of irreversible aging of inhibited BuChE, allowing some regeneration by spontaneous hydrolysis.

Full Text

The Full Text of this article is available as a PDF (451.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashani Y., Gentry M. K., Doctor B. P. Differences in conformational stability between native and phosphorylated acetylcholinesterase as evidenced by a monoclonal antibody. Biochemistry. 1990 Mar 13;29(10):2456–2463. doi: 10.1021/bi00462a004. [DOI] [PubMed] [Google Scholar]
  2. Ashani Y., Radić Z., Tsigelny I., Vellom D. C., Pickering N. A., Quinn D. M., Doctor B. P., Taylor P. Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono- and bisquaternary oximes. J Biol Chem. 1995 Mar 17;270(11):6370–6380. doi: 10.1074/jbc.270.11.6370. [DOI] [PubMed] [Google Scholar]
  3. Barak D., Kronman C., Ordentlich A., Ariel N., Bromberg A., Marcus D., Lazar A., Velan B., Shafferman A. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J Biol Chem. 1994 Mar 4;269(9):6296–6305. [PubMed] [Google Scholar]
  4. Barak D., Ordentlich A., Bromberg A., Kronman C., Marcus D., Lazar A., Ariel N., Velan B., Shafferman A. Allosteric modulation of acetylcholinesterase activity by peripheral ligands involves a conformational transition of the anionic subsite. Biochemistry. 1995 Nov 28;34(47):15444–15452. doi: 10.1021/bi00047a008. [DOI] [PubMed] [Google Scholar]
  5. Berman H. A., Leonard K. Chiral reactions of acetylcholinesterase probed with enantiomeric methylphosphonothioates. Noncovalent determinants of enzyme chirality. J Biol Chem. 1989 Mar 5;264(7):3942–3950. [PubMed] [Google Scholar]
  6. Berry W. K., Davies D. R. Factors influencing the rate of "aging" of a series of alkyl methylphosphonyl-acetylcholinesterases. Biochem J. 1966 Aug;100(2):572–576. doi: 10.1042/bj1000572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cauet G., Friboulet A., Thomas D. Horse serum butyrylcholinesterase kinetics: a molecular mechanism based on inhibition studies with dansylaminoethyltrimethylammonium. Biochem Cell Biol. 1987 Jun;65(6):529–535. doi: 10.1139/o87-068. [DOI] [PubMed] [Google Scholar]
  8. Clery C., Bec N., Balny C., Mozhaev V. V., Masson P. Kinetics of butyrylcholinesterase in reversed micelles under high pressure. Biochim Biophys Acta. 1995 Nov 15;1253(1):85–93. doi: 10.1016/0167-4838(95)00137-j. [DOI] [PubMed] [Google Scholar]
  9. Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974 Jan;137(1):143–144. doi: 10.1042/bj1370143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  11. Eriksson H., Augustinsson K. B. A mechanistic model for butyrylcholinesterase. Biochim Biophys Acta. 1979 Mar 16;567(1):161–173. doi: 10.1016/0005-2744(79)90183-9. [DOI] [PubMed] [Google Scholar]
  12. Faerman C., Ripoll D., Bon S., Le Feuvre Y., Morel N., Massoulié J., Sussman J. L., Silman I. Site-directed mutants designed to test back-door hypotheses of acetylcholinesterase function. FEBS Lett. 1996 May 13;386(1):65–71. doi: 10.1016/0014-5793(96)00374-2. [DOI] [PubMed] [Google Scholar]
  13. GREEN A. L., SMITH H. J. The reactivation of cholinesterase inhibited with organophosphorus compounds. I. Reactivation by 2-oxoaldoximes. Biochem J. 1958 Jan;68(1):28–31. doi: 10.1042/bj0680028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garrigue H., Maurizis J. C., Madelmont J. C., Nicolas C., Meyniel J. M., Louvel A., Demerseman P., Sentenac-Roumanou H., Veyre A. Disposition and metabolism of acetylcholinesterase reactivators 2PAM-I, TMB4 and R665 in rats submitted to organophosphate poisoning. Xenobiotica. 1991 May;21(5):583–595. doi: 10.3109/00498259109039498. [DOI] [PubMed] [Google Scholar]
  15. Garry P. J. Serum cholinesterase variants: examination of several differential inhibitors, salts, and buffers used to measure enzyme activity. Clin Chem. 1971 Mar;17(3):183–191. [PubMed] [Google Scholar]
  16. Gnatt A., Loewenstein Y., Yaron A., Schwarz M., Soreq H. Site-directed mutagenesis of active site residues reveals plasticity of human butyrylcholinesterase in substrate and inhibitor interactions. J Neurochem. 1994 Feb;62(2):749–755. doi: 10.1046/j.1471-4159.1994.62020749.x. [DOI] [PubMed] [Google Scholar]
  17. Grosfeld H., Barak D., Ordentlich A., Velan B., Shafferman A. Interactions of oxime reactivators with diethylphosphoryl adducts of human acetylcholinesterase and its mutant derivatives. Mol Pharmacol. 1996 Sep;50(3):639–649. [PubMed] [Google Scholar]
  18. Grubic Z., Stalc A., Sentjurc M., Pecar S., Gentry M. K., Doctor B. P. Different effects of two peripheral anionic site-binding ligands on acetylcholinesterase active-site gorge topography revealed by electron paramagnetic resonance. Biochim Biophys Acta. 1995 Jun 12;1249(2):155–160. doi: 10.1016/0167-4838(95)00036-t. [DOI] [PubMed] [Google Scholar]
  19. HARRIS H., WHITTAKER M. DIFFERENTIAL INHIBITION OF "USUAL" AND "ATYPICAL" SERUM CHOLINESTERASE BY NACL AND NAF. Ann Hum Genet. 1963 Aug;27:53–58. doi: 10.1111/j.1469-1809.1963.tb00780.x. [DOI] [PubMed] [Google Scholar]
  20. HEILBRONN E. In vitro reactivation and "ageing" of Tabuninhibited blood cholinesterases; studies with N-methyl-pyridinium-2-aldoxime methane sulphonate and N,N'-trimethylene bis (pyridinium-4-aldoxime) dibromide. Biochem Pharmacol. 1963 Jan;12:25–36. doi: 10.1016/0006-2952(63)90006-6. [DOI] [PubMed] [Google Scholar]
  21. HOBBIGER F. Effect of nicotinhydroxamic acid methiodide on human plasma cholinesterase inhibited by organophosphates containing a dialkylphosphato group. Br J Pharmacol Chemother. 1955 Sep;10(3):356–362. doi: 10.1111/j.1476-5381.1955.tb00884.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Harvey B., Scott R. P., Sellers D. J., Watts P. In vitro studies on the reactivation by oximes of phosphylated acetylcholinesterase--I. On the reactions of P2S with various organophosphates and the properties of the resultant phosphylated oximes. Biochem Pharmacol. 1986 Mar 1;35(5):737–744. doi: 10.1016/0006-2952(86)90240-6. [DOI] [PubMed] [Google Scholar]
  23. Harvey B., Scott R. P., Sellers D. J., Watts P. In vitro studies on the reactivation by oximes of phosphylated acetylcholinesterase--II. On the formation of O,O-diethyl phosphorylated AChE and O-ethyl methylphosphonylated AChE and their reactivation by PS2. Biochem Pharmacol. 1986 Mar 1;35(5):745–751. doi: 10.1016/0006-2952(86)90241-8. [DOI] [PubMed] [Google Scholar]
  24. Hosea N. A., Berman H. A., Taylor P. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases. Biochemistry. 1995 Sep 12;34(36):11528–11536. doi: 10.1021/bi00036a028. [DOI] [PubMed] [Google Scholar]
  25. KITZ R., WILSON I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem. 1962 Oct;237:3245–3249. [PubMed] [Google Scholar]
  26. Kitz R. J., Kremzner L. T. Conformational changes of acetylcholinesterase. Mol Pharmacol. 1968 Jan;4(1):104–107. [PubMed] [Google Scholar]
  27. Levy D., Ashani Y. Synthesis and in vitro properties of a powerful quaternary methylphosphonate inhibitor of acetylcholinesterase. A new marker in blood-brain barrier research. Biochem Pharmacol. 1986 Apr 1;35(7):1079–1085. doi: 10.1016/0006-2952(86)90142-5. [DOI] [PubMed] [Google Scholar]
  28. Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol Ther. 1990;47(1):35–60. doi: 10.1016/0163-7258(90)90044-3. [DOI] [PubMed] [Google Scholar]
  29. Lockridge O., La Du B. N. Comparison of atypical and usual human serum cholinesterase. Purification, number of active sites, substrate affinity, and turnover number. J Biol Chem. 1978 Jan 25;253(2):361–366. [PubMed] [Google Scholar]
  30. Mason H. J., Waine E., Stevenson A., Wilson H. K. Aging and spontaneous reactivation of human plasma cholinesterase activity after inhibition by organophosphorus pesticides. Hum Exp Toxicol. 1993 Nov;12(6):497–503. doi: 10.1177/096032719301200606. [DOI] [PubMed] [Google Scholar]
  31. Masson P., Adkins S., Gouet P., Lockridge O. Recombinant human butyrylcholinesterase G390V, the fluoride-2 variant, expressed in Chinese hamster ovary cells, is a low affinity variant. J Biol Chem. 1993 Jul 5;268(19):14329–14341. [PubMed] [Google Scholar]
  32. Masson P., Froment M. T., Bartels C. F., Lockridge O. Asp7O in the peripheral anionic site of human butyrylcholinesterase. Eur J Biochem. 1996 Jan 15;235(1-2):36–48. doi: 10.1111/j.1432-1033.1996.00036.x. [DOI] [PubMed] [Google Scholar]
  33. Masson P., Legrand P., Bartels C. F., Froment M. T., Schopfer L. M., Lockridge O. Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase. Biochemistry. 1997 Feb 25;36(8):2266–2277. doi: 10.1021/bi962484a. [DOI] [PubMed] [Google Scholar]
  34. Maurizis J. C., Ollier M., Nicolas C., Madelmont J. C., Garrigue H., Veyre A. In vitro binding of oxime acetylcholinesterase reactivators to proteoglycans synthesized by cultured chondrocytes and fibroblasts. Biochem Pharmacol. 1992 Nov 17;44(10):1927–1933. doi: 10.1016/0006-2952(92)90094-y. [DOI] [PubMed] [Google Scholar]
  35. Ordentlich A., Barak D., Kronman C., Ariel N., Segall Y., Velan B., Shafferman A. The architecture of human acetylcholinesterase active center probed by interactions with selected organophosphate inhibitors. J Biol Chem. 1996 May 17;271(20):11953–11962. doi: 10.1074/jbc.271.20.11953. [DOI] [PubMed] [Google Scholar]
  36. Ordentlich A., Kronman C., Barak D., Stein D., Ariel N., Marcus D., Velan B., Shafferman A. Engineering resistance to 'aging' of phosphylated human acetylcholinesterase. Role of hydrogen bond network in the active center. FEBS Lett. 1993 Nov 15;334(2):215–220. doi: 10.1016/0014-5793(93)81714-b. [DOI] [PubMed] [Google Scholar]
  37. Prester L., Simeon V. Kinetics of the inhibition of human serum cholinesterase phenotypes with the dimethylcarbamate of (2-hydroxy-5-phenylbenzyl)-trimethylammonium bromide (Ro 02-0683). Biochem Pharmacol. 1991 Nov 27;42(12):2313–2316. doi: 10.1016/0006-2952(91)90235-w. [DOI] [PubMed] [Google Scholar]
  38. Radić Z., Pickering N. A., Vellom D. C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry. 1993 Nov 16;32(45):12074–12084. doi: 10.1021/bi00096a018. [DOI] [PubMed] [Google Scholar]
  39. Reiner E., Simeon-Rudolf V., Skrinjaric-Spoljar M. Catalytic properties and distribution profiles of paraoxonase and cholinesterase phenotypes in human sera. Toxicol Lett. 1995 Dec;82-83:447–452. doi: 10.1016/0378-4274(95)03494-3. [DOI] [PubMed] [Google Scholar]
  40. Rogne O. The reaction of acetylcholinesterase with phosphylated oximes. Biochem Pharmacol. 1967 Oct;16(10):1853–1858. doi: 10.1016/0006-2952(67)90296-1. [DOI] [PubMed] [Google Scholar]
  41. Saxena A., Doctor B. P., Maxwell D. M., Lenz D. E., Radic Z., Taylor P. The role of glutamate-199 in the aging of cholinesterase. Biochem Biophys Res Commun. 1993 Nov 30;197(1):343–349. doi: 10.1006/bbrc.1993.2481. [DOI] [PubMed] [Google Scholar]
  42. Schwarz M., Loewenstein-Lichtenstein Y., Glick D., Liao J., Norgaard-Pedersen B., Soreq H. Successive organophosphate inhibition and oxime reactivation reveals distinct responses of recombinant human cholinesterase variants. Brain Res Mol Brain Res. 1995 Jul;31(1-2):101–110. doi: 10.1016/0169-328x(95)00040-y. [DOI] [PubMed] [Google Scholar]
  43. Shafferman A., Ordentlich A., Barak D., Stein D., Ariel N., Velan B. Aging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre. Biochem J. 1996 Sep 15;318(Pt 3):833–840. doi: 10.1042/bj3180833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  45. Wang E. I., Braid P. E. Oxime reactivation of diethylphosphoryl human serum cholinesterase. J Biol Chem. 1967 Jun 10;242(11):2683–2687. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES