Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 1;325(Pt 1):87–93. doi: 10.1042/bj3250087

Molecular cloning of up-regulated cytoskeletal genes from regenerating skeletal muscle: potential role of myocyte enhancer factor 2 proteins in the activation of muscle-regeneration-associated genes.

W M Akkila 1, R L Chambers 1, O I Ornatsky 1, J C McDermott 1
PMCID: PMC1218532  PMID: 9224633

Abstract

A subtractive hybridization and cloning strategy was used to identify genes that are up-regulated in regenerating compared with normal skeletal muscle. The gastrocnemius muscle of CD1 mice was injected with a myotoxic agent (BaCl2). A cDNA library was constructed from the regenerating muscle, and was screened with subtracted probes enriched in genes up-regulated during regeneration. Cofilin and vimentin cDNA clones were isolated. Both cofilin and vimentin were demonstrated to be overexpressed in regenerating compared with non-regenerating muscle (17-fold and 19-fold induction respectively). Cofilin and vimentin mRNAs also exhibited an increased expression in C2C12 myoblasts and a decreased expression in differentiated myotubes. Analysis of the regeneration-induced vimentin enhancer/promoter region revealed a consensus binding site for the myocyte enhancer factor 2 (MEF2) transcription factors. Electrophoretic mobility-shift assays and in vivo reporter assays revealed that MEF2 DNA-binding activity and transcriptional activation are increased in regenerating skeletal muscle, indicating that they may play a role in the activation of muscle genes during regeneration. These data suggest that both cofilin (an actin-regulatory protein) and vimentin (an intermediate filament) may be key components of the cytoskeletal reorganization that mediates muscle cell development and adult skeletal-muscle repair.

Full Text

The Full Text of this article is available as a PDF (346.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe H., Ohshima S., Obinata T. A cofilin-like protein is involved in the regulation of actin assembly in developing skeletal muscle. J Biochem. 1989 Oct;106(4):696–702. doi: 10.1093/oxfordjournals.jbchem.a122919. [DOI] [PubMed] [Google Scholar]
  2. Bilak S. R., Bremner E. M., Robson R. M. Composition of intermediate filament subunit proteins in embryonic, neonatal and postnatal porcine skeletal muscle. J Anim Sci. 1987 Feb;64(2):601–606. doi: 10.2527/jas1987.642601x. [DOI] [PubMed] [Google Scholar]
  3. Chambers R. L., McDermott J. C. Molecular basis of skeletal muscle regeneration. Can J Appl Physiol. 1996 Jun;21(3):155–184. doi: 10.1139/h96-014. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Deryckere F., Gannon F. A one-hour minipreparation technique for extraction of DNA-binding proteins from animal tissues. Biotechniques. 1994 Mar;16(3):405–405. [PubMed] [Google Scholar]
  6. Doumit M. E., Cook D. R., Merkel R. A. Fibroblast growth factor, epidermal growth factor, insulin-like growth factors, and platelet-derived growth factor-BB stimulate proliferation of clonally derived porcine myogenic satellite cells. J Cell Physiol. 1993 Nov;157(2):326–332. doi: 10.1002/jcp.1041570216. [DOI] [PubMed] [Google Scholar]
  7. Dworkin M. B., Dawid I. B. Use of a cloned library for the study of abundant poly(A)+RNA during Xenopus laevis development. Dev Biol. 1980 May;76(2):449–464. doi: 10.1016/0012-1606(80)90393-0. [DOI] [PubMed] [Google Scholar]
  8. Eftimie R., Brenner H. R., Buonanno A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1349–1353. doi: 10.1073/pnas.88.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferrari S., Battini R., Kaczmarek L., Rittling S., Calabretta B., de Riel J. K., Philiponis V., Wei J. F., Baserga R. Coding sequence and growth regulation of the human vimentin gene. Mol Cell Biol. 1986 Nov;6(11):3614–3620. doi: 10.1128/mcb.6.11.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fulton A. B., Prives J., Farmer S. R., Penman S. Developmental reorganization of the skeletal framework and its surface lamina in fusing muscle cells. J Cell Biol. 1981 Oct;91(1):103–112. doi: 10.1083/jcb.91.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gossett L. A., Kelvin D. J., Sternberg E. A., Olson E. N. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol. 1989 Nov;9(11):5022–5033. doi: 10.1128/mcb.9.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grounds M. D. Towards understanding skeletal muscle regeneration. Pathol Res Pract. 1991 Jan;187(1):1–22. doi: 10.1016/S0344-0338(11)81039-3. [DOI] [PubMed] [Google Scholar]
  13. Hayakawa K., Minami N., Ono S., Ogasawara Y., Totsuka T., Abe H., Tanaka T., Obinata T. Increased expression of cofilin in dystrophic chicken and mouse skeletal muscles. J Biochem. 1993 Oct;114(4):582–587. doi: 10.1093/oxfordjournals.jbchem.a124220. [DOI] [PubMed] [Google Scholar]
  14. Hirschhorn R. R., Aller P., Yuan Z. A., Gibson C. W., Baserga R. Cell-cycle-specific cDNAs from mammalian cells temperature sensitive for growth. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6004–6008. doi: 10.1073/pnas.81.19.6004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hubank M., Schatz D. G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 1994 Dec 25;22(25):5640–5648. doi: 10.1093/nar/22.25.5640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kami K., Masuhara M., Kashiba H., Kawai Y., Noguchi K., Senba E. Changes of vinculin and extracellular matrix components following blunt trauma to rat skeletal muscle. Med Sci Sports Exerc. 1993 Jul;25(7):832–840. doi: 10.1249/00005768-199307000-00012. [DOI] [PubMed] [Google Scholar]
  17. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  18. McDermott J. C., Cardoso M. C., Yu Y. T., Andres V., Leifer D., Krainc D., Lipton S. A., Nadal-Ginard B. hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol Cell Biol. 1993 Apr;13(4):2564–2577. doi: 10.1128/mcb.13.4.2564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nedivi E., Hevroni D., Naot D., Israeli D., Citri Y. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature. 1993 Jun 24;363(6431):718–722. doi: 10.1038/363718a0. [DOI] [PubMed] [Google Scholar]
  20. Nishida E., Iida K., Yonezawa N., Koyasu S., Yahara I., Sakai H. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5262–5266. doi: 10.1073/pnas.84.15.5262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nishida E., Maekawa S., Sakai H. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry. 1984 Oct 23;23(22):5307–5313. doi: 10.1021/bi00317a032. [DOI] [PubMed] [Google Scholar]
  22. Olson E. N., Perry M., Schulz R. A. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol. 1995 Nov;172(1):2–14. doi: 10.1006/dbio.1995.0002. [DOI] [PubMed] [Google Scholar]
  23. Ornatsky O. I., McDermott J. C. MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J Biol Chem. 1996 Oct 4;271(40):24927–24933. doi: 10.1074/jbc.271.40.24927. [DOI] [PubMed] [Google Scholar]
  24. Pollock R., Treisman R. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 1991 Dec;5(12A):2327–2341. doi: 10.1101/gad.5.12a.2327. [DOI] [PubMed] [Google Scholar]
  25. Rittling S. R., Baserga R. Functional analysis and growth factor regulation of the human vimentin promoter. Mol Cell Biol. 1987 Nov;7(11):3908–3915. doi: 10.1128/mcb.7.11.3908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Robertson T. A., Maley M. A., Grounds M. D., Papadimitriou J. M. The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res. 1993 Aug;207(2):321–331. doi: 10.1006/excr.1993.1199. [DOI] [PubMed] [Google Scholar]
  27. Wells D. J. Improved gene transfer by direct plasmid injection associated with regeneration in mouse skeletal muscle. FEBS Lett. 1993 Oct 11;332(1-2):179–182. doi: 10.1016/0014-5793(93)80508-r. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES