Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 1;325(Pt 1):117–121. doi: 10.1042/bj3250117

Larger increases in sensitivity to paracatalytic inactivation than in catalytic competence during experimental evolution of the second beta-galactosidase of Escherichia coli.

S V Calugaru 1, S Krishnan 1, C J Chany 2nd 1, B G Hall 1, M L Sinnott 1
PMCID: PMC1218535  PMID: 9224636

Abstract

Second-order rate constants (M-1.s-1) at 25 degrees C and pH 7.5 for inactivation of first-generation (ebga and ebgb), second-generation (ebgab and ebgabcd) and third-generation (ebgabcde) experimental evolvants of the title enzyme by 2',4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-galactopyranoside are 0.042, 0.30, 10, 24 and 57 respectively. Only partial inactivation is observed, except for ebgabcde. At a single high inactivator concentration, inactivation of the wild-type ebgo is also seen. The changes in sensitivity to the paracatalytic inactivator (over a range of 10(3.3)) are larger than changes in kcat/Km for lactose (over a range of 10(2.7)) or nitrophenyl galactosides (over a range of only 10(1.3)), or changes in degalactosylation rate (over a range of 10(1.7)). These data raise the possibility that evolution in the reverse sense, towards insensitivity to a paracatalytic inactivator with a proportionally lower effect on transformation of substrate, may become a mechanism for the development of bacterial resistance to antibiotics that act by paracatalytic enzyme inactivation.

Full Text

The Full Text of this article is available as a PDF (376.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun C., Brayer G. D., Withers S. G. Mechanism-based inhibition of yeast alpha-glucosidase and human pancreatic alpha-amylase by a new class of inhibitors. 2-Deoxy-2,2-difluoro-alpha-glycosides. J Biol Chem. 1995 Nov 10;270(45):26778–26781. doi: 10.1074/jbc.270.45.26778. [DOI] [PubMed] [Google Scholar]
  2. Calugaru S. V., Hall B. G., Sinnott M. L. Catalysis by the large subunit of the second beta-galactosidase of Escherichia coli in the absence of the small subunit. Biochem J. 1995 Nov 15;312(Pt 1):281–286. doi: 10.1042/bj3120281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Elliott A. C., K S., Sinnott M. L., Smith P. J., Bommuswamy J., Guo Z., Hall B. G., Zhang Y. The catalytic consequences of experimental evolution. Studies on the subunit structure of the second (ebg) beta-galactosidase of Escherichia coli, and on catalysis by ebgab, an experimental evolvant containing two amino acid substitutions. Biochem J. 1992 Feb 15;282(Pt 1):155–164. doi: 10.1042/bj2820155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gall B. G., Hartl D. L. Regulation of newly evolved enzymes. II. The ebg repressor. Genetics. 1975 Nov;81(3):427–435. doi: 10.1093/genetics/81.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gebler J. C., Aebersold R., Withers S. G. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) beta-galactosidase from Escherichia coli. J Biol Chem. 1992 Jun 5;267(16):11126–11130. [PubMed] [Google Scholar]
  6. Hall B. G., Betts P. W., Wootton J. C. DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes. Genetics. 1989 Dec;123(4):635–648. doi: 10.1093/genetics/123.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hall B. G. Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry. 1981 Jul 7;20(14):4042–4049. doi: 10.1021/bi00517a015. [DOI] [PubMed] [Google Scholar]
  8. Hall B. G. Evolutionary potential of the ebgA gene. Mol Biol Evol. 1995 May;12(3):514–517. doi: 10.1093/oxfordjournals.molbev.a040225. [DOI] [PubMed] [Google Scholar]
  9. Hall B. G. Experimental evolution of a new enzymatic function. Kinetic analysis of the ancestral (ebg) and evolved (ebg) enzymes. J Mol Biol. 1976 Oct 15;107(1):71–84. doi: 10.1016/s0022-2836(76)80018-6. [DOI] [PubMed] [Google Scholar]
  10. Jacobson R. H., Zhang X. J., DuBose R. F., Matthews B. W. Three-dimensional structure of beta-galactosidase from E. coli. Nature. 1994 Jun 30;369(6483):761–766. doi: 10.1038/369761a0. [DOI] [PubMed] [Google Scholar]
  11. Krishnan S., Hall B. G., Sinnott M. L. Catalytic consequences of experimental evolution: catalysis by a 'third-generation' evolvant of the second beta-galactosidase of Escherichia coli, ebgabcde, and by ebgabcd, a 'second-generation' evolvant containing two supposedly 'kinetically silent' mutations. Biochem J. 1995 Dec 15;312(Pt 3):971–977. doi: 10.1042/bj3120971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li B. F., Holdup D., Morton C. A., Sinnott M. L. The catalytic consequences of experimental evolution. Transition-state structure during catalysis by the evolved beta-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event. Biochem J. 1989 May 15;260(1):109–114. doi: 10.1042/bj2600109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCarter J. D., Adam M. J., Braun C., Namchuk M., Tull D., Withers S. G. Syntheses of 2-deoxy-2-fluoro mono- and oligo-saccharide glycosides from glycals and evaluation as glycosidase inhibitors. Carbohydr Res. 1993 Oct 18;249(1):77–90. doi: 10.1016/0008-6215(93)84061-a. [DOI] [PubMed] [Google Scholar]
  14. McCarter J. D., Adam M. J., Withers S. G. Binding energy and catalysis. Fluorinated and deoxygenated glycosides as mechanistic probes of Escherichia coli (lacZ) beta-galactosidase. Biochem J. 1992 Sep 15;286(Pt 3):721–727. doi: 10.1042/bj2860721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Selwood T., Sinnott M. L. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase. Biochem J. 1990 Jun 1;268(2):317–323. doi: 10.1042/bj2680317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sinnott M. L., Withers S. G. The necessity of magnesium cation for acid assistance aglycone departure in catalysis by Escherichia coli (lacZ) beta-galactosidase. Biochem J. 1978 Nov 1;175(2):539–546. doi: 10.1042/bj1750539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Srinivasan K., Konstantinidis A., Sinnott M. L., Hall B. G. Large changes of transition-state structure during experimental evolution of an enzyme. Biochem J. 1993 Apr 1;291(Pt 1):15–17. doi: 10.1042/bj2910015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Withers S. G., Aebersold R. Approaches to labeling and identification of active site residues in glycosidases. Protein Sci. 1995 Mar;4(3):361–372. doi: 10.1002/pro.5560040302. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES