Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 1;325(Pt 1):183–189. doi: 10.1042/bj3250183

Glutathione and the rate of cellular proliferation determine tumour cell sensitivity to tumour necrosis factor in vivo.

E Obrador 1, J Navarro 1, J Mompo 1, M Asensi 1, J A Pellicer 1, J M Estrela 1
PMCID: PMC1218544  PMID: 9224645

Abstract

Low rates of cellular proliferation are associated with low GSH content and enhanced sensitivity of Ehrlich ascites-tumour (EAT) cells to the cytotoxic effects of recombinant human tumour necrosis factor (rhTNF-alpha). Buthionine sulphoximine, a selective inhibitor of GSH synthesis, inhibited tumour growth and increased rhTNF-alpha cytoxicity in vitro. Administration of sublethal doses (10(6)units/kg per day) of rhTNF-alpha to EAT-bearing mice promoted oxidative stress (as measured by increases in intracellular peroxide levels, O2(-); generation and mitochondrial GSSG) and resulted in a slight reduction (19%) in tumour cell number when controls showed the highest rate of cellular proliferation. ATP (1mmol/kg per day)-induced selective GSH depletion, when combined with rhTNF-alpha administration, afforded a 61% inhibition of tumour growth and resulted in a significant extension of host survival. Administration of N-acetylcysteine (1mmol/kg per day) or GSH ester (5mmol/kg per day) abolished the rhTNF-alpha- and ATP-induced effects on tumour growth by maintaining high GSH levels in the cancer cells. Our results demonstrate that the sensitivity of tumour cells to rhTNF-alpha in vivo depends on their GSH content and their rate of proliferation.

Full Text

The Full Text of this article is available as a PDF (291.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerboom T. P., Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981;77:373–382. doi: 10.1016/s0076-6879(81)77050-2. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. E., Powrie F., Puri R. N., Meister A. Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Arch Biochem Biophys. 1985 Jun;239(2):538–548. doi: 10.1016/0003-9861(85)90723-4. [DOI] [PubMed] [Google Scholar]
  3. Arai K. I., Lee F., Miyajima A., Miyatake S., Arai N., Yokota T. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem. 1990;59:783–836. doi: 10.1146/annurev.bi.59.070190.004031. [DOI] [PubMed] [Google Scholar]
  4. Asensi M., Sastre J., Pallardó F. V., García de la Asunción J., Estrela J. M., Viña J. A high-performance liquid chromatography method for measurement of oxidized glutathione in biological samples. Anal Biochem. 1994 Mar;217(2):323–328. doi: 10.1006/abio.1994.1126. [DOI] [PubMed] [Google Scholar]
  5. Beutler B., Cerami A. Cachectin (tumor necrosis factor): a macrophage hormone governing cellular metabolism and inflammatory response. Endocr Rev. 1988 Feb;9(1):57–66. doi: 10.1210/edrv-9-1-57. [DOI] [PubMed] [Google Scholar]
  6. Carswell E. A., Old L. J., Kassel R. L., Green S., Fiore N., Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3666–3670. doi: 10.1073/pnas.72.9.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen L. B. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol. 1988;4:155–181. doi: 10.1146/annurev.cb.04.110188.001103. [DOI] [PubMed] [Google Scholar]
  8. Creasey A. A., Doyle L. V., Reynolds M. T., Jung T., Lin L. S., Vitt C. R. Biological effects of recombinant human tumor necrosis factor and its novel muteins on tumor and normal cell lines. Cancer Res. 1987 Jan 1;47(1):145–149. [PubMed] [Google Scholar]
  9. Deneke S. M., Fanburg B. L. Regulation of cellular glutathione. Am J Physiol. 1989 Oct;257(4 Pt 1):L163–L173. doi: 10.1152/ajplung.1989.257.4.L163. [DOI] [PubMed] [Google Scholar]
  10. Estrela J. M., Hernandez R., Terradez P., Asensi M., Puertes I. R., Viña J. Regulation of glutathione metabolism in Ehrlich ascites tumour cells. Biochem J. 1992 Aug 15;286(Pt 1):257–262. doi: 10.1042/bj2860257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Estrela J. M., Obrador E., Navarro J., Lasso De la Vega M. C., Pellicer J. A. Elimination of Ehrlich tumours by ATP-induced growth inhibition, glutathione depletion and X-rays. Nat Med. 1995 Jan;1(1):84–88. doi: 10.1038/nm0195-84. [DOI] [PubMed] [Google Scholar]
  12. Gamen S., Anel A., Montoya J., Marzo I., Piñeiro A., Naval J. mtDNA-depleted U937 cells are sensitive to TNF and Fas-mediated cytotoxicity. FEBS Lett. 1995 Nov 27;376(1-2):15–18. doi: 10.1016/0014-5793(95)01236-1. [DOI] [PubMed] [Google Scholar]
  13. Garlick P. J., McNurlan M. A., Preedy V. R. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J. 1980 Nov 15;192(2):719–723. doi: 10.1042/bj1920719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goossens V., Grooten J., De Vos K., Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8115–8119. doi: 10.1073/pnas.92.18.8115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Griffith O. W., Meister A. Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4668–4672. doi: 10.1073/pnas.82.14.4668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hauser G. J., McIntosh J. K., Travis W. D., Rosenberg S. A. Manipulation of oxygen radical-scavenging capacity in mice alters host sensitivity to tumor necrosis factor toxicity but does not interfere with its antitumor efficacy. Cancer Res. 1990 Jun 15;50(12):3503–3508. [PubMed] [Google Scholar]
  17. Kirstein M., Fiers W., Baglioni C. Growth inhibition and cytotoxicity of tumor necrosis factor in L929 cells is enhanced by high cell density and inhibition of mRNA synthesis. J Immunol. 1986 Oct 1;137(7):2277–2280. [PubMed] [Google Scholar]
  18. Lasso de la Vega M. C., Terradez P., Obrador E., Navarro J., Pellicer J. A., Estrela J. M. Inhibition of cancer growth and selective glutathione depletion in Ehrlich tumour cells in vivo by extracellular ATP. Biochem J. 1994 Feb 15;298(Pt 1):99–105. doi: 10.1042/bj2980099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meister A. Selective modification of glutathione metabolism. Science. 1983 Apr 29;220(4596):472–477. doi: 10.1126/science.6836290. [DOI] [PubMed] [Google Scholar]
  20. Mitchell J. B., Cook J. A., DeGraff W., Glatstein E., Russo A. Glutathione modulation in cancer treatment: will it work? Int J Radiat Oncol Biol Phys. 1989 May;16(5):1289–1295. doi: 10.1016/0360-3016(89)90301-5. [DOI] [PubMed] [Google Scholar]
  21. Mårtensson J., Lai J. C., Meister A. High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7185–7189. doi: 10.1073/pnas.87.18.7185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mårtensson J., Meister A. Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc Natl Acad Sci U S A. 1989 Jan;86(2):471–475. doi: 10.1073/pnas.86.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Petit P. X., O'Connor J. E., Grunwald D., Brown S. C. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem. 1990 Dec 12;194(2):389–397. doi: 10.1111/j.1432-1033.1990.tb15632.x. [DOI] [PubMed] [Google Scholar]
  24. Rothe G., Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2',7'-dichlorofluorescin. J Leukoc Biol. 1990 May;47(5):440–448. [PubMed] [Google Scholar]
  25. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  26. Schulze-Osthoff K., Bakker A. C., Vanhaesebroeck B., Beyaert R., Jacob W. A., Fiers W. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem. 1992 Mar 15;267(8):5317–5323. [PubMed] [Google Scholar]
  27. Schulze-Osthoff K., Beyaert R., Vandevoorde V., Haegeman G., Fiers W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J. 1993 Aug;12(8):3095–3104. doi: 10.1002/j.1460-2075.1993.tb05978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shaw J. P., Chou I. N. Elevation of intracellular glutathione content associated with mitogenic stimulation of quiescent fibroblasts. J Cell Physiol. 1986 Nov;129(2):193–198. doi: 10.1002/jcp.1041290210. [DOI] [PubMed] [Google Scholar]
  29. Sheppard B. C., Norton J. A. Tumor necrosis factor and interleukin-1 protection against the lethal effects of tumor necrosis factor. Surgery. 1991 Jun;109(6):698–705. [PubMed] [Google Scholar]
  30. Shoji Y., Uedono Y., Ishikura H., Takeyama N., Tanaka T. DNA damage induced by tumour necrosis factor-alpha in L929 cells is mediated by mitochondrial oxygen radical formation. Immunology. 1995 Apr;84(4):543–548. [PMC free article] [PubMed] [Google Scholar]
  31. Staal-van den Brekel A. J., Dentener M. A., Schols A. M., Buurman W. A., Wouters E. F. Increased resting energy expenditure and weight loss are related to a systemic inflammatory response in lung cancer patients. J Clin Oncol. 1995 Oct;13(10):2600–2605. doi: 10.1200/JCO.1995.13.10.2600. [DOI] [PubMed] [Google Scholar]
  32. Sugarman B. J., Aggarwal B. B., Hass P. E., Figari I. S., Palladino M. A., Jr, Shepard H. M. Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science. 1985 Nov 22;230(4728):943–945. doi: 10.1126/science.3933111. [DOI] [PubMed] [Google Scholar]
  33. Terradez P., Asensi M., Lasso de la Vega M. C., Puertes I. R., Viña J., Estrela J. M. Depletion of tumour glutathione in vivo by buthionine sulphoximine: modulation by the rate of cellular proliferation and inhibition of cancer growth. Biochem J. 1993 Jun 1;292(Pt 2):477–483. doi: 10.1042/bj2920477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Watanabe N., Niitsu Y., Neda H., Sone H., Yamauchi N., Umetsu T., Urushizaki I. Antitumor effect of tumor necrosis factor against various primarily cultured human cancer cells. Jpn J Cancer Res. 1985 Nov;76(11):1115–1119. [PubMed] [Google Scholar]
  35. Yamauchi N., Watanabe N., Kuriyama H., Neda H., Maeda M., Himeno T., Tsuji Y., Niitsu Y. Suppressive effects of intracellular glutathione on hydroxyl radical production induced by tumor necrosis factor. Int J Cancer. 1990 Nov 15;46(5):884–888. doi: 10.1002/ijc.2910460522. [DOI] [PubMed] [Google Scholar]
  36. Zimmerman R. J., Chan A., Leadon S. A. Oxidative damage in murine tumor cells treated in vitro by recombinant human tumor necrosis factor. Cancer Res. 1989 Apr 1;49(7):1644–1648. [PubMed] [Google Scholar]
  37. Zimmerman R. J., Marafino B. J., Jr, Chan A., Landre P., Winkelhake J. L. The role of oxidant injury in tumor cell sensitivity to recombinant human tumor necrosis factor in vivo. Implications for mechanisms of action. J Immunol. 1989 Feb 15;142(4):1405–1409. [PubMed] [Google Scholar]
  38. van der Zee J., van den Aardweg G. J., van Rhoon G. C., van den Berg A. P., de Wit R. Thermal enhancement of both tumour necrosis factor alpha-induced systemic toxicity and tumour cure in rats. Br J Cancer. 1995 Jun;71(6):1158–1162. doi: 10.1038/bjc.1995.226. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES