Abstract
Artificial membranes (liposomes) can interact with the equatorial segment (ES) of human spermatozoa, provided that the acrosome reaction (AR) has occurred [Arts, Kuiken, Jager and Hoekstra (1993) Eur. J. Biochem. 217, 1001-1009]. Using fluorescently labelled liposomes, this interaction can be seen as either punctate fluorescence in the ES (lip-ESp), reflecting only bound liposomes, or as diffuse fluorescence in this region (lip-ESd), indicating that the liposomes have fused with the ES membrane. Only equatorial segments that still contain constituents of the acrosomal matrix have the capacity to bind liposomes and eventually to fuse with them. Since the exposure of such intact equatorial segments is the exclusive result of induction of the AR under physiological conditions, these results imply that liposomes can be used for the rapid detection of acrosome-reacted spermatozoa. The lip-ESp and lip-ESd patterns were shown to be reflections of two distinct properties of the ES. Proteolytic treatment after AR completely inhibited the formation of a lip-ESd pattern, whereas formation of the lip-ESp pattern was only marginally inhibited by the proteolytic treatment. The same results were obtained using anti-sperm antibodies, which did not react with acrosome-intact spermatozoa. Proteolytic treatment of spermatozoa before AR induction had no effect on the fusion capacity of the ES after subsequent AR, which implies that the putative fusion protein is not accessible before AR. Thus fusion of liposomes with the ES of human spermatozoa is mediated by a sperm protein(s), whereas the lip-ESp pattern is not likely to represent the liposome-binding stage that precedes the fusion step.
Full Text
The Full Text of this article is available as a PDF (346.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. J., Abbott A. F., Jack R. M. The role of complement component C3b and its receptors in sperm-oocyte interaction. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10051–10055. doi: 10.1073/pnas.90.21.10051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arts E. G., Jager S., Hoekstra D. Evidence for the existence of lipid-diffusion barriers in the equatorial segment of human spermatozoa. Biochem J. 1994 Nov 15;304(Pt 1):211–218. doi: 10.1042/bj3040211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arts E. G., Kuiken J., Jager S. A new method to detect acrosome-reacted spermatozoa using biotinylated soybean trypsin inhibitor. Fertil Steril. 1994 Nov;62(5):1044–1055. doi: 10.1016/s0015-0282(16)57072-1. [DOI] [PubMed] [Google Scholar]
- Arts E. G., Kuiken J., Jager S., Hoekstra D. Fusion of artificial membranes with mammalian spermatozoa. Specific involvement of the equatorial segment after acrosome reaction. Eur J Biochem. 1993 Nov 1;217(3):1001–1009. doi: 10.1111/j.1432-1033.1993.tb18331.x. [DOI] [PubMed] [Google Scholar]
- Bedford J. M., Moore H. D., Franklin L. E. Significance of the equatorial segment of the acrosome of the spermatozoon in eutherian mammals. Exp Cell Res. 1979 Mar 1;119(1):119–126. doi: 10.1016/0014-4827(79)90341-0. [DOI] [PubMed] [Google Scholar]
- Blobel C. P., Myles D. G., Primakoff P., White J. M. Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J Cell Biol. 1990 Jul;111(1):69–78. doi: 10.1083/jcb.111.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blobel C. P., Wolfsberg T. G., Turck C. W., Myles D. G., Primakoff P., White J. M. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature. 1992 Mar 19;356(6366):248–252. doi: 10.1038/356248a0. [DOI] [PubMed] [Google Scholar]
- Boldt J., Howe A. M., Parkerson J. B., Gunter L. E., Kuehn E. Carbohydrate involvement in sperm-egg fusion in mice. Biol Reprod. 1989 Apr;40(4):887–896. doi: 10.1095/biolreprod40.4.887. [DOI] [PubMed] [Google Scholar]
- Boldt J., Howe A. M., Preble J. Enzymatic alteration of the ability of mouse egg plasma membrane to interact with sperm. Biol Reprod. 1988 Aug;39(1):19–27. doi: 10.1095/biolreprod39.1.19. [DOI] [PubMed] [Google Scholar]
- Clark J. M., Koehler J. K. Observations of hamster sperm-egg fusion in freeze-fracture replicas including the use of filipin as a sterol marker. Mol Reprod Dev. 1990 Dec;27(4):351–365. doi: 10.1002/mrd.1080270410. [DOI] [PubMed] [Google Scholar]
- Díaz-Pérez E., Meizel S. Importance of mammalian sperm metalloendoprotease activity during the acrosome reaction to subsequent sperm-egg fusion: inhibitor studies with human sperm and zona-free hamster eggs. Mol Reprod Dev. 1992 Feb;31(2):122–130. doi: 10.1002/mrd.1080310206. [DOI] [PubMed] [Google Scholar]
- Díaz-Pérez E., Thomas P., Meizel S. Evidence suggesting a role for sperm metalloendoprotease activity in penetration of zona-free hamster eggs by human sperm. J Exp Zool. 1988 Nov;248(2):213–221. doi: 10.1002/jez.1402480213. [DOI] [PubMed] [Google Scholar]
- Fusi F. M., Vignali M., Busacca M., Bronson R. A. Evidence for the presence of an integrin cell adhesion receptor on the oolemma of unfertilized human oocytes. Mol Reprod Dev. 1992 Mar;31(3):215–222. doi: 10.1002/mrd.1080310309. [DOI] [PubMed] [Google Scholar]
- Gadella B. M., Lopes-Cardozo M., van Golde L. M., Colenbrander B., Gadella T. W., Jr Glycolipid migration from the apical to the equatorial subdomains of the sperm head plasma membrane precedes the acrosome reaction. Evidence for a primary capacitation event in boar spermatozoa. J Cell Sci. 1995 Mar;108(Pt 3):935–946. doi: 10.1242/jcs.108.3.935. [DOI] [PubMed] [Google Scholar]
- Glabe C. G., Clark D. The sequence of the Arbacia punctulata bindin cDNA and implications for the structural basis of species-specific sperm adhesion and fertilization. Dev Biol. 1991 Feb;143(2):282–288. doi: 10.1016/0012-1606(91)90078-h. [DOI] [PubMed] [Google Scholar]
- Glabe C. G. Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. II. Bindin induces the fusion of mixed-phase vesicles that contain phosphatidylcholine and phosphatidylserine in vitro. J Cell Biol. 1985 Mar;100(3):800–806. doi: 10.1083/jcb.100.3.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green D. P. Mammalian fertilization as a biological machine: a working model for adhesion and fusion of sperm and oocyte. Hum Reprod. 1993 Jan;8(1):91–96. doi: 10.1093/oxfordjournals.humrep.a137883. [DOI] [PubMed] [Google Scholar]
- Hoekstra D., Düzgüneş N. Ricinus communis agglutinin-mediated agglutination and fusion of glycolipid-containing phospholipid vesicles: effect of carbohydrate head group size, calcium ions, and spermine. Biochemistry. 1986 Mar 25;25(6):1321–1330. doi: 10.1021/bi00354a020. [DOI] [PubMed] [Google Scholar]
- Hoekstra D. Membrane fusion of enveloped viruses: especially a matter of proteins. J Bioenerg Biomembr. 1990 Apr;22(2):121–155. doi: 10.1007/BF00762943. [DOI] [PubMed] [Google Scholar]
- Hong K., Vacquier V. D. Fusion of liposomes induced by a cationic protein from the acrosome granule of abalone spermatozoa. Biochemistry. 1986 Feb 11;25(3):543–549. doi: 10.1021/bi00351a004. [DOI] [PubMed] [Google Scholar]
- Jager S., Kremer J., van Slochteren-Draaisma T. A simple method of screening for antisperm antibodies in the human male. Detection of spermatozoal surface IgG with the direct mixed antiglobulin reaction carried out on untreated fresh human semen. Int J Fertil. 1978;23(1):12–21. [PubMed] [Google Scholar]
- Lennarz W. J., Strittmatter W. J. Cellular functions of metallo-endoproteinases. Biochim Biophys Acta. 1991 Jul 22;1071(2):149–158. doi: 10.1016/0304-4157(91)90022-o. [DOI] [PubMed] [Google Scholar]
- Muga A., Neugebauer W., Hirama T., Surewicz W. K. Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry. 1994 Apr 19;33(15):4444–4448. doi: 10.1021/bi00181a002. [DOI] [PubMed] [Google Scholar]
- Myles D. G., Kimmel L. H., Blobel C. P., White J. M., Primakoff P. Identification of a binding site in the disintegrin domain of fertilin required for sperm-egg fusion. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4195–4198. doi: 10.1073/pnas.91.10.4195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myles D. G. Molecular mechanisms of sperm-egg membrane binding and fusion in mammals. Dev Biol. 1993 Jul;158(1):35–45. doi: 10.1006/dbio.1993.1166. [DOI] [PubMed] [Google Scholar]
- Nieva J. L., Bron R., Corver J., Wilschut J. Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J. 1994 Jun 15;13(12):2797–2804. doi: 10.1002/j.1460-2075.1994.tb06573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okabe M., Nagira M., Kawai Y., Matzno S., Mimura T., Mayumi T. A human sperm antigen possibly involved in binding and/or fusion with zona-free hamster eggs. Fertil Steril. 1990 Dec;54(6):1121–1126. doi: 10.1016/s0015-0282(16)54015-1. [DOI] [PubMed] [Google Scholar]
- Primakoff P., Hyatt H., Tredick-Kline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol. 1987 Jan;104(1):141–149. doi: 10.1083/jcb.104.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Primakoff P., Myles D. G. A map of the guinea pig sperm surface constructed with monoclonal antibodies. Dev Biol. 1983 Aug;98(2):417–428. doi: 10.1016/0012-1606(83)90371-8. [DOI] [PubMed] [Google Scholar]
- Rochwerger L., Cuasnicu P. S. Redistribution of a rat sperm epididymal glycoprotein after in vitro and in vivo capacitation. Mol Reprod Dev. 1992 Jan;31(1):34–41. doi: 10.1002/mrd.1080310107. [DOI] [PubMed] [Google Scholar]
- Saling P. M., Irons G., Waibel R. Mouse sperm antigens that participate in fertilization. I. Inhibition of sperm fusion with the egg plasma membrane using monoclonal antibodies. Biol Reprod. 1985 Sep;33(2):515–526. doi: 10.1095/biolreprod33.2.515. [DOI] [PubMed] [Google Scholar]
- Swanson W. J., Vacquier V. D. Liposome fusion induced by a M(r) 18,000 protein localized to the acrosomal region of acrosome-reacted abalone spermatozoa. Biochemistry. 1995 Oct 31;34(43):14202–14208. doi: 10.1021/bi00043a026. [DOI] [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talbot P., Chacon R. S. Ultrastructural observations on binding and membrane fusion between human sperm and zona pellucida-free hamster oocytes. Fertil Steril. 1982 Feb;37(2):240–248. doi: 10.1016/s0015-0282(16)46047-4. [DOI] [PubMed] [Google Scholar]
- Wassarman P. M. Mouse gamete adhesion molecules. Biol Reprod. 1992 Feb;46(2):186–191. doi: 10.1095/biolreprod46.2.186. [DOI] [PubMed] [Google Scholar]
- Wassarman P. M. The biology and chemistry of fertilization. Science. 1987 Jan 30;235(4788):553–560. doi: 10.1126/science.3027891. [DOI] [PubMed] [Google Scholar]
- White J. M. Viral and cellular membrane fusion proteins. Annu Rev Physiol. 1990;52:675–697. doi: 10.1146/annurev.ph.52.030190.003331. [DOI] [PubMed] [Google Scholar]
- Wolfsberg T. G., Bazan J. F., Blobel C. P., Myles D. G., Primakoff P., White J. M. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10783–10787. doi: 10.1073/pnas.90.22.10783. [DOI] [PMC free article] [PubMed] [Google Scholar]