Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 1;325(Pt 1):239–247. doi: 10.1042/bj3250239

Role of sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases in mediating Ca2+ waves and local Ca2+-release microdomains in cultured glia.

P B Simpson 1, J T Russell 1
PMCID: PMC1218551  PMID: 9224652

Abstract

We have characterized the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase (SERCA) pumps in cultured rat cortical type-1 astrocytes, type-2 astrocytes and oligodendrocytes. Perfusion with 10 microM cyclopiazonic acid (CPA) or 1 microM thapsigargin evoked a large and persistent elevation in cytosolic [Ca2+] in normal Ca2+-containing medium and a small and transient increase in nominally Ca2+-free medium. Subtraction of the response in Ca2+-free medium from that in the control revealed a slow-onset Ca2+-entry response to SERCA inhibition, which began after most of the store depletion had occurred. Thapsigargin- and CPA-induced responses propagated as Ca2+ waves, which began in several distinct cellular sites and travelled throughout the cell and through nearby cells, in confluent cultures. Propagation was supported by specialized Ca2+-release sites where the amplitude of the response was significantly higher and the rate of rise steeper. Such higher Ca2+-release kinetics were observed at these sites during Ins(1,4,5)P3-mediated Ca2+ waves in the same cells. Fluorescently tagged thapsigargin labelled SERCA pumps throughout glial cell bodies and processes. In oligodendrocyte processes, multiple domains with elevated SERCA staining were always associated with mitochondria. Our results are consistent with a model in which only a single Ca2+ store, expressing Ins(1,4,5)P3 receptors and SERCAs sensitive to both thapsigargin and CPA, is present in rat cortical glia, and indicate that inhibition of SERCA activates both Ca2+ release as a wavefront and Ca2+ entry via store-operated channels. The spatial relationship between SERCAs and mitochondria is likely to be important for regulating microdomains of elevated Ca2+-release kinetics.

Full Text

The Full Text of this article is available as a PDF (732.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  2. Bindokas V. P., Miller R. J. Excitotoxic degeneration is initiated at non-random sites in cultured rat cerebellar neurons. J Neurosci. 1995 Nov;15(11):6999–7011. doi: 10.1523/JNEUROSCI.15-11-06999.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charles A. C., Dirksen E. R., Merrill J. E., Sanderson M. J. Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin. Glia. 1993 Feb;7(2):134–145. doi: 10.1002/glia.440070203. [DOI] [PubMed] [Google Scholar]
  4. Clapham D. E. Intracellular calcium. Replenishing the stores. Nature. 1995 Jun 22;375(6533):634–635. doi: 10.1038/375634a0. [DOI] [PubMed] [Google Scholar]
  5. Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., Smith S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990 Jan 26;247(4941):470–473. doi: 10.1126/science.1967852. [DOI] [PubMed] [Google Scholar]
  6. Dani J. W., Chernjavsky A., Smith S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron. 1992 Mar;8(3):429–440. doi: 10.1016/0896-6273(92)90271-e. [DOI] [PubMed] [Google Scholar]
  7. Finkbeiner S. M. Glial calcium. Glia. 1993 Oct;9(2):83–104. doi: 10.1002/glia.440090202. [DOI] [PubMed] [Google Scholar]
  8. Giaume C., McCarthy K. D. Control of gap-junctional communication in astrocytic networks. Trends Neurosci. 1996 Aug;19(8):319–325. doi: 10.1016/0166-2236(96)10046-1. [DOI] [PubMed] [Google Scholar]
  9. Golovina V. A., Bambrick L. L., Yarowsky P. J., Krueger B. K., Blaustein M. P. Modulation of two functionally distinct Ca2+ stores in astrocytes: role of the plasmalemmal Na/Ca exchanger. Glia. 1996 Apr;16(4):296–305. doi: 10.1002/(SICI)1098-1136(199604)16:4<296::AID-GLIA2>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  10. Gunter T. E., Gunter K. K., Sheu S. S., Gavin C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994 Aug;267(2 Pt 1):C313–C339. doi: 10.1152/ajpcell.1994.267.2.C313. [DOI] [PubMed] [Google Scholar]
  11. Inesi G., Sagara Y. Specific inhibitors of intracellular Ca2+ transport ATPases. J Membr Biol. 1994 Jul;141(1):1–6. doi: 10.1007/BF00232868. [DOI] [PubMed] [Google Scholar]
  12. Jaffe L. F. The path of calcium in cytosolic calcium oscillations: a unifying hypothesis. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9883–9887. doi: 10.1073/pnas.88.21.9883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jou M. J., Peng T. I., Sheu S. S. Histamine induces oscillations of mitochondrial free Ca2+ concentration in single cultured rat brain astrocytes. J Physiol. 1996 Dec 1;497(Pt 2):299–308. doi: 10.1113/jphysiol.1996.sp021769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim W. T., Rioult M. G., Cornell-Bell A. H. Glutamate-induced calcium signaling in astrocytes. Glia. 1994 Jun;11(2):173–184. doi: 10.1002/glia.440110211. [DOI] [PubMed] [Google Scholar]
  15. Kriegler S., Chiu S. Y. Calcium signaling of glial cells along mammalian axons. J Neurosci. 1993 Oct;13(10):4229–4245. doi: 10.1523/JNEUROSCI.13-10-04229.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lawrie A. M., Rizzuto R., Pozzan T., Simpson A. W. A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem. 1996 May 3;271(18):10753–10759. doi: 10.1074/jbc.271.18.10753. [DOI] [PubMed] [Google Scholar]
  17. Papp B., Enyedi A., Kovács T., Sarkadi B., Wuytack F., Thastrup O., Gárdos G., Bredoux R., Levy-Toledano S., Enouf J. Demonstration of two forms of calcium pumps by thapsigargin inhibition and radioimmunoblotting in platelet membrane vesicles. J Biol Chem. 1991 Aug 5;266(22):14593–14596. [PubMed] [Google Scholar]
  18. Papp B., Pászty K., Kovács T., Sarkadi B., Gárdos G., Enouf J., Enyedi A. Characterization of the inositol trisphosphate-sensitive and insensitive calcium stores by selective inhibition of the endoplasmic reticulum-type calcium pump isoforms in isolated platelet membrane vesicles. Cell Calcium. 1993 Jul;14(7):531–538. doi: 10.1016/0143-4160(93)90074-g. [DOI] [PubMed] [Google Scholar]
  19. Pende M., Fisher T. L., Simpson P. B., Russell J. T., Blenis J., Gallo V. Neurotransmitter- and growth factor-induced cAMP response element binding protein phosphorylation in glial cell progenitors: role of calcium ions, protein kinase C, and mitogen-activated protein kinase/ribosomal S6 kinase pathway. J Neurosci. 1997 Feb 15;17(4):1291–1301. doi: 10.1523/JNEUROSCI.17-04-01291.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peuchen S., Clark J. B., Duchen M. R. Mechanisms of intracellular calcium regulation in adult astrocytes. Neuroscience. 1996 Apr;71(3):871–883. doi: 10.1016/0306-4522(95)00515-3. [DOI] [PubMed] [Google Scholar]
  21. Pozzan T., Rizzuto R., Volpe P., Meldolesi J. Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 1994 Jul;74(3):595–636. doi: 10.1152/physrev.1994.74.3.595. [DOI] [PubMed] [Google Scholar]
  22. Putney J. W., Jr, Bird G. S. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev. 1993 Oct;14(5):610–631. doi: 10.1210/edrv-14-5-610. [DOI] [PubMed] [Google Scholar]
  23. Roth B. J., Yagodin S. V., Holtzclaw L., Russell J. T. A mathematical model of agonist-induced propagation of calcium waves in astrocytes. Cell Calcium. 1995 Jan;17(1):53–64. doi: 10.1016/0143-4160(95)90102-7. [DOI] [PubMed] [Google Scholar]
  24. Sheppard C. A., Simpson P. B., Sharp A. H., Nucifora F. C., Ross C. A., Lange G. D., Russell J. T. Comparison of type 2 inositol 1,4,5-trisphosphate receptor distribution and subcellular Ca2+ release sites that support Ca2+ waves in cultured astrocytes. J Neurochem. 1997 Jun;68(6):2317–2327. doi: 10.1046/j.1471-4159.1997.68062317.x. [DOI] [PubMed] [Google Scholar]
  25. Simpson P. B., Challiss R. A., Nahorski S. R. Divalent cation entry in cultured rat cerebellar granule cells measured using Mn2+ quench of fura 2 fluorescence. Eur J Neurosci. 1995 May 1;7(5):831–840. doi: 10.1111/j.1460-9568.1995.tb01070.x. [DOI] [PubMed] [Google Scholar]
  26. Simpson P. B., Challiss R. A., Nahorski S. R. Neuronal Ca2+ stores: activation and function. Trends Neurosci. 1995 Jul;18(7):299–306. doi: 10.1016/0166-2236(95)93919-o. [DOI] [PubMed] [Google Scholar]
  27. Simpson P. B., Russell J. T. Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes. J Biol Chem. 1996 Dec 27;271(52):33493–33501. doi: 10.1074/jbc.271.52.33493. [DOI] [PubMed] [Google Scholar]
  28. Smith P. M., Gallacher D. V. Thapsigargin-induced Ca2+ mobilization in acutely isolated mouse lacrimal acinar cells is dependent on a basal level of Ins(1,4,5)P3 and is inhibited by heparin. Biochem J. 1994 Apr 1;299(Pt 1):37–40. doi: 10.1042/bj2990037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith S. J. Neural signalling. Neuromodulatory astrocytes. Curr Biol. 1994 Sep 1;4(9):807–810. doi: 10.1016/s0960-9822(00)00178-0. [DOI] [PubMed] [Google Scholar]
  30. Takeda M., Nelson D. J., Soliven B. Calcium signaling in cultured rat oligodendrocytes. Glia. 1995 Jul;14(3):225–236. doi: 10.1002/glia.440140308. [DOI] [PubMed] [Google Scholar]
  31. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Verkhratsky A., Kettenmann H. Calcium signalling in glial cells. Trends Neurosci. 1996 Aug;19(8):346–352. doi: 10.1016/0166-2236(96)10048-5. [DOI] [PubMed] [Google Scholar]
  33. Wojcikiewicz R. J., Tobin A. B., Nahorski S. R. Desensitization of cell signalling mediated by phosphoinositidase C. Trends Pharmacol Sci. 1993 Jul;14(7):279–285. doi: 10.1016/0165-6147(93)90131-3. [DOI] [PubMed] [Google Scholar]
  34. Yagodin S. V., Holtzclaw L., Sheppard C. A., Russell J. T. Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes. J Neurobiol. 1994 Mar;25(3):265–280. doi: 10.1002/neu.480250307. [DOI] [PubMed] [Google Scholar]
  35. Yagodin S., Holtzclaw L. A., Russell J. T. Subcellular calcium oscillators and calcium influx support agonist-induced calcium waves in cultured astrocytes. Mol Cell Biochem. 1995 Aug-Sep;149-150:137–144. doi: 10.1007/BF01076572. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES